Some Results on Almost Paracontact Metric Manifolds

被引:0
|
作者
Antonella Perrone
机构
[1] Università del Salento,Dipartimento di Matematica e Fisica “E. De Giorgi”
来源
关键词
Paracontact metric structures; vertical sectional curvatures; normal structures; almost para-CR structures; Bott partial connection; 53C15; 53C25; 53C50;
D O I
暂无
中图分类号
学科分类号
摘要
We use the tensor h=(1/2)Lξφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${h=(1/2){\mathcal{L}_{\xi}{\varphi}}}$$\end{document} to investigate the geometry of an almost paracontact metric manifold (M,φ,ξ,η,g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(M, \varphi, \xi, \eta, g)}$$\end{document}, also in terms of almost para-CR geometry, emphasizing analogies and differences with respect to the contact metric case. In particular, we investigate in the paracontact metric setting, some conditions which, in the contact metric case, characterize K-contact and Sasakian manifolds. We then give examples of paracontact metric manifolds without Riemannian counterparts. Besides, we show that an almost paracontact structure (φ,ξ,η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\varphi, \xi, \eta)}$$\end{document} is normal if and only if h =  0 and the corresponding almost para-CR structure (H=kerη,J=φ|H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\mathcal{H} = \ker \eta, J = \varphi_{|\mathcal{H}})}$$\end{document} is a para-CR structure.
引用
收藏
页码:3311 / 3326
页数:15
相关论文
共 50 条
  • [1] Some Results on Almost Paracontact Metric Manifolds
    Perrone, Antonella
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) : 3311 - 3326
  • [2] Some relations between almost paracontact metric manifolds and almost parahermitian manifolds
    OZDEMIR, Nulifer
    ERDOGAN, Necip
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (04) : 1459 - 1477
  • [3] SOME RESULTS ON PSEUDOSYMMETRIC NORMAL PARACONTACT METRIC MANIFOLDS
    Atceken, Mehmet
    Mert, Tugba
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (04): : 1044 - 1058
  • [4] η-RICCI SOLITONS IN (ε)-ALMOST PARACONTACT METRIC MANIFOLDS
    Blaga, Adara Monica
    Perktas, Selcen Yuksel
    Acet, Bilal Eftal
    Erdogan, Feyza Esra
    GLASNIK MATEMATICKI, 2018, 53 (01) : 205 - 220
  • [5] δ-Almost Yamabe Solitons in Paracontact Metric Manifolds
    De, Krishnendu
    De, Uday Chand
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)
  • [6] SOME RESULTS ON GENERALIZED (k, mu)-PARACONTACT METRIC MANIFOLDS
    Makhal, Sourav
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2018, 33 (03): : 401 - 408
  • [7] Geometry of almost Ricci solitons on paracontact metric manifolds
    Ali, Akram
    Mofarreh, Fatemah
    Patra, Dhriti Sundar
    QUAESTIONES MATHEMATICAE, 2022, 45 (08) : 1167 - 1180
  • [8] Some curvature properties of paracontact metric manifolds
    Mandal, Krishanu
    De, Uday Chand
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2018, 9 (03) : 159 - 165
  • [9] The decomposition of almost paracontact metric manifolds in eleven classes revisited
    Zamkovoy S.
    Nakova G.
    Journal of Geometry, 2018, 109 (1)
  • [10] Para-CR structures on almost paracontact metric manifolds
    Welyczko, Joanna
    JOURNAL OF APPLIED ANALYSIS, 2014, 20 (02) : 105 - 117