We use the tensor h=(1/2)Lξφ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${h=(1/2){\mathcal{L}_{\xi}{\varphi}}}$$\end{document} to investigate the geometry of an almost paracontact metric manifold (M,φ,ξ,η,g)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${(M, \varphi, \xi, \eta, g)}$$\end{document}, also in terms of almost para-CR geometry, emphasizing analogies and differences with respect to the contact metric case. In particular, we investigate in the paracontact metric setting, some conditions which, in the contact metric case, characterize K-contact and Sasakian manifolds. We then give examples of paracontact metric manifolds without Riemannian counterparts. Besides, we show that an almost paracontact structure (φ,ξ,η)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${(\varphi, \xi, \eta)}$$\end{document} is normal if and only if h = 0 and the corresponding almost para-CR structure (H=kerη,J=φ|H)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${(\mathcal{H} = \ker \eta, J = \varphi_{|\mathcal{H}})}$$\end{document} is a para-CR structure.