Some Results on Almost Paracontact Metric Manifolds

被引:0
|
作者
Antonella Perrone
机构
[1] Università del Salento,Dipartimento di Matematica e Fisica “E. De Giorgi”
来源
关键词
Paracontact metric structures; vertical sectional curvatures; normal structures; almost para-CR structures; Bott partial connection; 53C15; 53C25; 53C50;
D O I
暂无
中图分类号
学科分类号
摘要
We use the tensor h=(1/2)Lξφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${h=(1/2){\mathcal{L}_{\xi}{\varphi}}}$$\end{document} to investigate the geometry of an almost paracontact metric manifold (M,φ,ξ,η,g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(M, \varphi, \xi, \eta, g)}$$\end{document}, also in terms of almost para-CR geometry, emphasizing analogies and differences with respect to the contact metric case. In particular, we investigate in the paracontact metric setting, some conditions which, in the contact metric case, characterize K-contact and Sasakian manifolds. We then give examples of paracontact metric manifolds without Riemannian counterparts. Besides, we show that an almost paracontact structure (φ,ξ,η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\varphi, \xi, \eta)}$$\end{document} is normal if and only if h =  0 and the corresponding almost para-CR structure (H=kerη,J=φ|H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\mathcal{H} = \ker \eta, J = \varphi_{|\mathcal{H}})}$$\end{document} is a para-CR structure.
引用
收藏
页码:3311 / 3326
页数:15
相关论文
共 50 条
  • [41] SOME NOTES ON ALMOST PARACONTACT STRUCTURES
    Salimov, Arif
    Cayir, Hasim
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2013, 66 (03): : 331 - 338
  • [42] Some Results on Contact Metric Manifolds
    Amalendu Ghosh
    Ramesh Sharma
    Annals of Global Analysis and Geometry, 1997, 15 : 497 - 507
  • [43] Some results on contact metric manifolds
    Ghosh, A
    Sharma, R
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1997, 15 (06) : 497 - 507
  • [44] Cotton solitons on three dimensional paracontact metric manifolds
    Ozkan, Mustafa
    Erken, Irem Kupeli
    Murathan, Cengizhan
    FILOMAT, 2023, 37 (15) : 5109 - 5121
  • [45] NOTES ON A CLASS OF PARACONTACT METRIC 3-MANIFOLDS
    Zamkovoy, Simeon
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2020, 73 (08): : 1060 - 1068
  • [46] CHARACTERIZATIONS FOR TOTALLY GEODESIC SUBMANIFOLDS OF (κ, μ)-PARACONTACT METRIC MANIFOLDS
    Atceken, Mehmet
    Uygun, Pakize
    KOREAN JOURNAL OF MATHEMATICS, 2020, 28 (03): : 555 - 571
  • [47] Semi-Slant Submanifolds of an Almost Paracontact Metric Manifold
    Atceken, Mehmet
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2010, 53 (02): : 206 - 217
  • [48] Certain results on almost contact pseudo-metric manifolds
    V. Venkatesha
    Devaraja Mallesha Naik
    Mukut Mani Tripathi
    Journal of Geometry, 2019, 110
  • [49] Some lightlike submanifolds of almost complex manifolds with Norden metric
    Galia Nakova
    Journal of Geometry, 2012, 103 (2) : 293 - 312
  • [50] Some lightlike submanifolds of almost complex manifolds with Norden metric
    Nakova, Galia
    JOURNAL OF GEOMETRY, 2012, 103 (02) : 293 - 312