Some Results on Almost Paracontact Metric Manifolds

被引:0
|
作者
Antonella Perrone
机构
[1] Università del Salento,Dipartimento di Matematica e Fisica “E. De Giorgi”
来源
关键词
Paracontact metric structures; vertical sectional curvatures; normal structures; almost para-CR structures; Bott partial connection; 53C15; 53C25; 53C50;
D O I
暂无
中图分类号
学科分类号
摘要
We use the tensor h=(1/2)Lξφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${h=(1/2){\mathcal{L}_{\xi}{\varphi}}}$$\end{document} to investigate the geometry of an almost paracontact metric manifold (M,φ,ξ,η,g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(M, \varphi, \xi, \eta, g)}$$\end{document}, also in terms of almost para-CR geometry, emphasizing analogies and differences with respect to the contact metric case. In particular, we investigate in the paracontact metric setting, some conditions which, in the contact metric case, characterize K-contact and Sasakian manifolds. We then give examples of paracontact metric manifolds without Riemannian counterparts. Besides, we show that an almost paracontact structure (φ,ξ,η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\varphi, \xi, \eta)}$$\end{document} is normal if and only if h =  0 and the corresponding almost para-CR structure (H=kerη,J=φ|H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\mathcal{H} = \ker \eta, J = \varphi_{|\mathcal{H}})}$$\end{document} is a para-CR structure.
引用
收藏
页码:3311 / 3326
页数:15
相关论文
共 50 条
  • [31] SPECIAL CONNECTIONS IN ALMOST PARACONTACT METRIC GEOMETRY
    Blaga, A. M.
    Crasmareanu, M.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2015, 41 (06): : 1345 - 1353
  • [32] Biharmonic Slant Frenet Curves in 3-Dimensional Normal Almost Paracontact Metric Manifolds
    Petktas, Selecen Yuksel
    Erdogan, Feyza Esra
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES (ICANAS 2017), 2017, 1833
  • [33] HOMOGENEOUS PARACONTACT METRIC THREE-MANIFOLDS
    Calvaruso, G.
    ILLINOIS JOURNAL OF MATHEMATICS, 2011, 55 (02) : 697 - 718
  • [34] CONFORMAL CURVATURE TENSOR ON PARACONTACT METRIC MANIFOLDS
    Venkatesha
    Naik, Devaraja Mallesha
    Kumara, H. Aruna
    MATEMATICKI VESNIK, 2020, 72 (03): : 215 - 225
  • [35] Legendre Curves on Generalized Paracontact Metric Manifolds
    Cornelia-Livia Bejan
    Şemsi Eken Meriç
    Erol Kılıç
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 185 - 199
  • [36] Geometry of H-paracontact metric manifolds
    Calvaruso, Giovanni
    Perrone, Domenico
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2015, 86 (3-4): : 325 - 346
  • [37] Legendre Curves on Generalized Paracontact Metric Manifolds
    Bejan, Cornelia-Livia
    Eken Meric, Semsi
    Kilic, Erol
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (01) : 185 - 199
  • [38] On almost paracontact Riemannian manifolds of type (n, n)
    Manev M.
    Staikova M.
    Journal of Geometry, 2001, 72 (1) : 108 - 114
  • [39] Some results on almost Kenmotsu manifolds
    Naik, Devaraja Mallesha
    Venkatesha, V.
    Kumara, H. Aruna
    NOTE DI MATEMATICA, 2020, 40 (01): : 87 - 100
  • [40] Slant submersions from almost paracontact Riemannian manifolds
    Gunduzalp, Yilmaz
    KUWAIT JOURNAL OF SCIENCE, 2015, 42 (01) : 17 - 29