Some Results on Almost Paracontact Metric Manifolds

被引:0
|
作者
Antonella Perrone
机构
[1] Università del Salento,Dipartimento di Matematica e Fisica “E. De Giorgi”
来源
关键词
Paracontact metric structures; vertical sectional curvatures; normal structures; almost para-CR structures; Bott partial connection; 53C15; 53C25; 53C50;
D O I
暂无
中图分类号
学科分类号
摘要
We use the tensor h=(1/2)Lξφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${h=(1/2){\mathcal{L}_{\xi}{\varphi}}}$$\end{document} to investigate the geometry of an almost paracontact metric manifold (M,φ,ξ,η,g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(M, \varphi, \xi, \eta, g)}$$\end{document}, also in terms of almost para-CR geometry, emphasizing analogies and differences with respect to the contact metric case. In particular, we investigate in the paracontact metric setting, some conditions which, in the contact metric case, characterize K-contact and Sasakian manifolds. We then give examples of paracontact metric manifolds without Riemannian counterparts. Besides, we show that an almost paracontact structure (φ,ξ,η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\varphi, \xi, \eta)}$$\end{document} is normal if and only if h =  0 and the corresponding almost para-CR structure (H=kerη,J=φ|H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\mathcal{H} = \ker \eta, J = \varphi_{|\mathcal{H}})}$$\end{document} is a para-CR structure.
引用
收藏
页码:3311 / 3326
页数:15
相关论文
共 50 条
  • [21] Some results on paracontact metric (k, μ)-manifolds with respect to the Schouten-van Kampen connection
    Perktas, Selcen Yuksel
    De, Uday Chand
    Yildiz, Ahmet
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (02): : 466 - 482
  • [22] ALMOST PARACONTACT AND PARAHODGE STRUCTURES ON MANIFOLDS
    KANEYUKI, S
    WILLIAMS, FL
    NAGOYA MATHEMATICAL JOURNAL, 1985, 99 (SEP) : 173 - 187
  • [23] On submanifolds of Lorentzian almost paracontact manifolds
    Tripathi, MM
    Shukla, SS
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2001, 59 (3-4): : 327 - 338
  • [24] Some Results on Normal Almost Contact Metric Manifolds of Dimension Three
    Ghosh, Sujit
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2022, 46 (02) : 185 - 200
  • [25] Magnetic Biharmonic Curves on 3-dimensional Normal Almost Paracontact Metric Manifolds
    Perktas, Selcen Yuksel
    Blaga, Adara M.
    Acet, Bilal Eftal
    Erdogan, Feyza Esra
    1ST INTERNATIONAL CONFERENCE ON MATHEMATICAL AND RELATED SCIENCES (ICMRS 2018), 2018, 1991
  • [26] On a class of Lorentzian paracontact metric manifolds
    Prasad, K. L. Sai
    Devi, S. Sunitha
    Deekshitulu, G. V. S. R.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (49): : 514 - 527
  • [27] On a remarkable class of paracontact metric manifolds
    Martin-Molina, Veronica
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2015, 12 (08)
  • [28] PARACONTACT METRIC MANIFOLDS WITHOUT A CONTACT METRIC COUNTERPART
    Martin-Molina, Veronica
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (01): : 175 - 191
  • [29] Harmonicity on some almost contact metric manifolds
    Gherghe C.
    Rendiconti del Circolo Matematico di Palermo, 2000, 49 (3) : 415 - 424
  • [30] Geometry of paracontact metric as an almost Yamabe solitons
    Kumara, H. Aruna
    Venkatesha, V.
    Fasihi-Ramandi, Gh.
    Naik, Devaraja Mallesha
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (05)