On the k-generalized fibonacci numbers and high-order linear recurrence relations

被引:12
|
作者
Yang, Sheng-liang [1 ]
机构
[1] Lanzhou Univ Technol, Dept Appl Math, Lanzhou 730050, Gansu, Peoples R China
关键词
k-generalized Fibonacci sequence; order-k linear homogeneous recurrence relation; elementary symmetric function; complete homogeneous symmetric function; determinant; companion matrix;
D O I
10.1016/j.amc.2007.07.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, using elementary symmetric function and complete homogeneous symmetric function, we obtain a determinant formula for the k-generalized Fibonacci sequence. The relationship between the k-generalized Fibonacci sequence and the order-k linear homogeneous recurrence relation has been investigated, and a general solution for the latter is also derived. Furthermore, we obtain an explicit expression for the elements in the nth power of the companion matrix in terms of k-generalized Fibonacci numbers. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:850 / 857
页数:8
相关论文
共 50 条
  • [21] On the K-generalized Fibonacci matrix Q*k
    Lee, G.-Y.
    Lee, S.-G.
    Shin, H.-G.
    Linear Algebra and Its Applications, 1997, 251
  • [22] Duplications in the k-generalized Fibonacci sequences
    Luca, Florian
    Petho, Attila
    Szalay, Laszlo
    NEW YORK JOURNAL OF MATHEMATICS, 2021, 27 : 1115 - 1133
  • [23] A DIOPHANTINE EQUATION RELATED TO THE SUM OF SQUARES OF CONSECUTIVE k-GENERALIZED FIBONACCI NUMBERS
    Chaves, Ana Paula
    Marques, Diego
    FIBONACCI QUARTERLY, 2014, 52 (01): : 70 - 74
  • [24] On the x-coordinates of Pell equations which are k-generalized Fibonacci numbers
    Ddamulira, Mahadi
    Luca, Florian
    JOURNAL OF NUMBER THEORY, 2020, 207 : 156 - 195
  • [25] A combinatoric proof and generalization of Ferguson's formula for k-generalized Fibonacci numbers
    Kessler, D
    Schiff, J
    FIBONACCI QUARTERLY, 2004, 42 (03): : 266 - 273
  • [26] ON THE k-GENERALIZED PADOVAN NUMBERS
    Lee, Gwangyeon
    UTILITAS MATHEMATICA, 2018, 108 : 185 - 194
  • [27] Multiplicative Independence in k-Generalized Fibonacci Sequences
    Carlos Alexis Gómez Ruiz
    Florian Luca
    Lithuanian Mathematical Journal, 2016, 56 : 503 - 517
  • [28] Markov triples with k-generalized Fibonacci components
    Gomez, Carlos A.
    Gomez, Jhonny C.
    Luca, Florian
    ANNALES MATHEMATICAE ET INFORMATICAE, 2020, 52 : 107 - 115
  • [29] Diophantine Triples and k-Generalized Fibonacci Sequences
    Clemens Fuchs
    Christoph Hutle
    Florian Luca
    László Szalay
    Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 1449 - 1465
  • [30] Multiplicative Independence in k-Generalized Fibonacci Sequences
    Gomez Ruiz, Carlos Alexis
    Luca, Florian
    LITHUANIAN MATHEMATICAL JOURNAL, 2016, 56 (04) : 503 - 517