A DIOPHANTINE EQUATION RELATED TO THE SUM OF SQUARES OF CONSECUTIVE k-GENERALIZED FIBONACCI NUMBERS

被引:0
|
作者
Chaves, Ana Paula [1 ]
Marques, Diego [1 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
来源
FIBONACCI QUARTERLY | 2014年 / 52卷 / 01期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (F-n)n >= 0 be the Fibonacci sequence given by Fn+2 = Fn+1 Fn, for n >= 0, where F-0 = 0 and F-1 = 1. There are several interesting identities involving this sequence such as F-n(2) + F-n+1(2) = F2n+1, for all n >= 0. One of the most known generalizations of the Fibonacci sequence, is the k-generalized Fibonacci sequence (F-n((k)))(n) which is defined by the initial values 0, 0,..., 0,1 (k terms) and such that each term afterwards is the sum of the k preceding terms. In this paper, we prove that contrarily to the Fibonacci case, the Diophantine equation (F-n((k)))(2) (vertical bar) (F-n+1((k)))(2) = F-m((k)) has no any solution in positive integers n, m and k, with n > 1 and k >= 3.
引用
收藏
页码:70 / 74
页数:5
相关论文
共 50 条
  • [1] AN EXPONENTIAL DIOPHANTINE EQUATION RELATED TO THE SUM OF POWERS OF TWO CONSECUTIVE k-GENERALIZED FIBONACCI NUMBERS
    Gomez Ruiz, Carlos Alexis
    Luca, Florian
    [J]. COLLOQUIUM MATHEMATICUM, 2014, 137 (02) : 171 - 188
  • [2] A Diophantine equation related to the sum of powers of two consecutive generalized Fibonacci numbers
    Chaves, Ana Paula
    Marques, Diego
    [J]. JOURNAL OF NUMBER THEORY, 2015, 156 : 1 - 14
  • [3] An Equation Related to k-Generalized Fibonacci Numbers
    Marques, Diego
    Trojovsky, Pavel
    [J]. UTILITAS MATHEMATICA, 2016, 101 : 79 - 89
  • [4] On the sum of the reciprocals of k-generalized Fibonacci numbers
    Alahmadi, Adel
    Luca, Florian
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2022, 30 (01): : 31 - 42
  • [5] DIOPHANTINE QUADRUPLES WITH VALUES IN k-GENERALIZED FIBONACCI NUMBERS
    Gomez Ruiz, Carlos Alexis
    Luca, Florian
    [J]. MATHEMATICA SLOVACA, 2018, 68 (04) : 939 - 949
  • [6] Diophantine Triples and k-Generalized Fibonacci Sequences
    Clemens Fuchs
    Christoph Hutle
    Florian Luca
    László Szalay
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 1449 - 1465
  • [7] Diophantine Triples and k-Generalized Fibonacci Sequences
    Fuchs, Clemens
    Hutle, Christoph
    Luca, Florian
    Szalay, Laszlo
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (03) : 1449 - 1465
  • [8] A Diophantine Equation With Powers of Three Consecutive k - Fibonacci Numbers
    Gomez, Carlos A.
    Gomez, Jhonny C.
    Luca, Florian
    [J]. RESULTS IN MATHEMATICS, 2024, 79 (04)
  • [9] GCD OF SUMS OF k CONSECUTIVE SQUARES OF GENERALIZED FIBONACCI NUMBERS
    Mbirika, Aba
    Spilker, Juergen
    [J]. FIBONACCI QUARTERLY, 2022, 60 (05): : 255 - 269
  • [10] An exponential Diophantine equation related to powers of two consecutive Fibonacci numbers
    Luca, Florian
    Oyono, Roger
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2011, 87 (04) : 45 - 50