Diophantine Triples and k-Generalized Fibonacci Sequences

被引:0
|
作者
Clemens Fuchs
Christoph Hutle
Florian Luca
László Szalay
机构
[1] University of Salzburg,
[2] University of Witwatersrand,undefined
[3] Centro de Ciencias Matemáticas UNAM,undefined
[4] J. Selye University,undefined
[5] University of West Hungary,undefined
关键词
Diophantine triples; Generalized Fibonacci numbers; Diophantine equations; Application of the Subspace theorem; 11D72; 11B39; 11J87;
D O I
暂无
中图分类号
学科分类号
摘要
We show that if k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document} is an integer and (Fn(k))n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big (F_n^{(k)}\big )_{n\ge 0}$$\end{document} is the sequence of k-generalized Fibonacci numbers, then there are only finitely many triples of positive integers 1<a<b<c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<a<b<c$$\end{document} such that ab+1,ac+1,bc+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ab+1,~ac+1,~bc+1$$\end{document} are all members of {Fn(k):n≥1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big \{F_n^{(k)}: n\ge 1\big \}$$\end{document}. This generalizes a previous result where the statement for k=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=3$$\end{document} was proved. The result is ineffective since it is based on Schmidt’s subspace theorem.
引用
收藏
页码:1449 / 1465
页数:16
相关论文
共 50 条
  • [1] Diophantine Triples and k-Generalized Fibonacci Sequences
    Fuchs, Clemens
    Hutle, Christoph
    Luca, Florian
    Szalay, Laszlo
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (03) : 1449 - 1465
  • [2] Markov triples with k-generalized Fibonacci components
    Gomez, Carlos A.
    Gomez, Jhonny C.
    Luca, Florian
    [J]. ANNALES MATHEMATICAE ET INFORMATICAE, 2020, 52 : 107 - 115
  • [3] Gapsets and the k-generalized Fibonacci sequences
    Almeida Filho, Gilberto B.
    Bernardini, Matheus
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2024, 34 (02) : 227 - 249
  • [4] Duplications in the k-generalized Fibonacci sequences
    Luca, Florian
    Petho, Attila
    Szalay, Laszlo
    [J]. NEW YORK JOURNAL OF MATHEMATICS, 2021, 27 : 1115 - 1133
  • [5] DIOPHANTINE QUADRUPLES WITH VALUES IN k-GENERALIZED FIBONACCI NUMBERS
    Gomez Ruiz, Carlos Alexis
    Luca, Florian
    [J]. MATHEMATICA SLOVACA, 2018, 68 (04) : 939 - 949
  • [6] Multiplicative Independence in k-Generalized Fibonacci Sequences
    Carlos Alexis Gómez Ruiz
    Florian Luca
    [J]. Lithuanian Mathematical Journal, 2016, 56 : 503 - 517
  • [7] Multiplicative Independence in k-Generalized Fibonacci Sequences
    Gomez Ruiz, Carlos Alexis
    Luca, Florian
    [J]. LITHUANIAN MATHEMATICAL JOURNAL, 2016, 56 (04) : 503 - 517
  • [8] On a conjecture about repdigits in k-generalized Fibonacci sequences
    Bravo, Jhon J.
    Luca, Florian
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 82 (3-4): : 623 - 639
  • [9] ON THE INTERSECTION OF TWO DISTINCT k-GENERALIZED FIBONACCI SEQUENCES
    Marques, Diego
    [J]. MATHEMATICA BOHEMICA, 2012, 137 (04): : 403 - 413
  • [10] Almost Repdigit k-Fibonacci Numbers with an Application of k-Generalized Fibonacci Sequences
    Altassan, Alaa
    Alan, Murat
    [J]. MATHEMATICS, 2023, 11 (02)