Multiplicative Independence in k-Generalized Fibonacci Sequences

被引:0
|
作者
Carlos Alexis Gómez Ruiz
Florian Luca
机构
[1] Universidad del Valle,Departamento de Matemáticas
[2] University of the Witwatersrand,School of Mathematics
来源
关键词
multiplicatively independent integers; -generalized Fibonacci numbers; lower bounds for nonzero linear forms in logarithms of algebraic numbers; 11B39; 11D61; 11J86;
D O I
暂无
中图分类号
学科分类号
摘要
A generalization of the Fibonacci sequence is the k-generalized Fibonacci sequence (Fn(k))n ≥ 2 − k with some fixed integer k ≥ 2 whose first k terms are 0,…, 0, 1 and each term afterward is the sum of the preceding k terms. Carmichael’s primitive divisor theorem ensures that all members after the twelfth of the Fibonacci sequence are multiplicatively independent. Although there is no version of this theorem for k-generalized Fibonacci sequences with k > 2, here we find all the pairs of k-Fibonacci numbers that are multiplicatively dependent.
引用
收藏
页码:503 / 517
页数:14
相关论文
共 50 条
  • [1] Multiplicative Independence in k-Generalized Fibonacci Sequences
    Gomez Ruiz, Carlos Alexis
    Luca, Florian
    [J]. LITHUANIAN MATHEMATICAL JOURNAL, 2016, 56 (04) : 503 - 517
  • [2] Gapsets and the k-generalized Fibonacci sequences
    Almeida Filho, Gilberto B.
    Bernardini, Matheus
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2024, 34 (02) : 227 - 249
  • [3] Duplications in the k-generalized Fibonacci sequences
    Luca, Florian
    Petho, Attila
    Szalay, Laszlo
    [J]. NEW YORK JOURNAL OF MATHEMATICS, 2021, 27 : 1115 - 1133
  • [4] Diophantine Triples and k-Generalized Fibonacci Sequences
    Clemens Fuchs
    Christoph Hutle
    Florian Luca
    László Szalay
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 1449 - 1465
  • [5] Diophantine Triples and k-Generalized Fibonacci Sequences
    Fuchs, Clemens
    Hutle, Christoph
    Luca, Florian
    Szalay, Laszlo
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (03) : 1449 - 1465
  • [6] On a conjecture about repdigits in k-generalized Fibonacci sequences
    Bravo, Jhon J.
    Luca, Florian
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 82 (3-4): : 623 - 639
  • [7] ON THE INTERSECTION OF TWO DISTINCT k-GENERALIZED FIBONACCI SEQUENCES
    Marques, Diego
    [J]. MATHEMATICA BOHEMICA, 2012, 137 (04): : 403 - 413
  • [8] Almost Repdigit k-Fibonacci Numbers with an Application of k-Generalized Fibonacci Sequences
    Altassan, Alaa
    Alan, Murat
    [J]. MATHEMATICS, 2023, 11 (02)
  • [9] The proof of a conjecture concerning the intersection of k-generalized Fibonacci sequences
    Marques, Diego
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (03): : 455 - 468
  • [10] Representation of integers by k-generalized Fibonacci sequences and applications in cryptography
    Badidja, Salim
    Mokhtar, Ahmed Ait
    Ozer, Ozen
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (09)