On the sum of the reciprocals of k-generalized Fibonacci numbers

被引:1
|
作者
Alahmadi, Adel [1 ]
Luca, Florian [1 ,2 ,3 ]
机构
[1] King Abdulaziz Univ, Res Grp Algebra Struct & Applicat, POB 1540, Jeddah, Saudi Arabia
[2] Univ Witwatersrand, Sch Maths, 1 Jan Smuts, ZA-2000 Johannesburg, South Africa
[3] Max Plack Inst Math, Bonn, Germany
关键词
Linearly recurrent sequences; Primary; 11B39;
D O I
10.2478/auom-2022-0002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we that if {F-n((k))}(n >= 0) denotes the k-generalized Fibonacci sequence then for n >= 2 the closest integer to the reciprocal of Sigma(m) (>=) (n) 1/F-m((k)) is F-n((k)) - F-n-1((k)).
引用
收藏
页码:31 / 42
页数:12
相关论文
共 50 条
  • [1] On the sum of the reciprocals of k-generalized Pell numbers
    Normenyo, Benedict Vasco
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023,
  • [2] A DIOPHANTINE EQUATION RELATED TO THE SUM OF SQUARES OF CONSECUTIVE k-GENERALIZED FIBONACCI NUMBERS
    Chaves, Ana Paula
    Marques, Diego
    [J]. FIBONACCI QUARTERLY, 2014, 52 (01): : 70 - 74
  • [3] Generalized Heisenberg algebras and k-generalized Fibonacci numbers
    Schork, Matthias
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (15) : 4207 - 4214
  • [4] On the representation of k-generalized Fibonacci and Lucas numbers
    Öcal, AA
    Tuglu, N
    Altinisik, E
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2005, 170 (01) : 584 - 596
  • [5] An Equation Related to k-Generalized Fibonacci Numbers
    Marques, Diego
    Trojovsky, Pavel
    [J]. UTILITAS MATHEMATICA, 2016, 101 : 79 - 89
  • [6] The Binet formula for the k-generalized Fibonacci numbers
    Yang, Sheng-liang
    Zhang, Hui-ting
    [J]. ARS COMBINATORIA, 2014, 116 : 193 - 204
  • [7] On k-generalized Fibonacci numbers with negative indices
    Petho, Attila
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2021, 98 (3-4): : 401 - 418
  • [8] A Simplified Binet Formula for k-Generalized Fibonacci Numbers
    Dresden, Gregory P. B.
    Du, Zhaohui
    [J]. JOURNAL OF INTEGER SEQUENCES, 2014, 17 (04)
  • [9] The Binet formula and representations of k-generalized Fibonacci numbers
    Lee, GY
    Lee, SG
    Kim, JS
    Shin, HK
    [J]. FIBONACCI QUARTERLY, 2001, 39 (02): : 158 - 164
  • [10] DIOPHANTINE QUADRUPLES WITH VALUES IN k-GENERALIZED FIBONACCI NUMBERS
    Gomez Ruiz, Carlos Alexis
    Luca, Florian
    [J]. MATHEMATICA SLOVACA, 2018, 68 (04) : 939 - 949