On the sum of the reciprocals of k-generalized Fibonacci numbers

被引:1
|
作者
Alahmadi, Adel [1 ]
Luca, Florian [1 ,2 ,3 ]
机构
[1] King Abdulaziz Univ, Res Grp Algebra Struct & Applicat, POB 1540, Jeddah, Saudi Arabia
[2] Univ Witwatersrand, Sch Maths, 1 Jan Smuts, ZA-2000 Johannesburg, South Africa
[3] Max Plack Inst Math, Bonn, Germany
关键词
Linearly recurrent sequences; Primary; 11B39;
D O I
10.2478/auom-2022-0002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we that if {F-n((k))}(n >= 0) denotes the k-generalized Fibonacci sequence then for n >= 2 the closest integer to the reciprocal of Sigma(m) (>=) (n) 1/F-m((k)) is F-n((k)) - F-n-1((k)).
引用
收藏
页码:31 / 42
页数:12
相关论文
共 50 条
  • [31] Diophantine Triples and k-Generalized Fibonacci Sequences
    Fuchs, Clemens
    Hutle, Christoph
    Luca, Florian
    Szalay, Laszlo
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (03) : 1449 - 1465
  • [32] ACCELERATION OF THE SUM OF FIBONACCI RECIPROCALS
    GRIFFIN, P
    [J]. FIBONACCI QUARTERLY, 1992, 30 (02): : 179 - 181
  • [33] A Binomial Sum of Generalized Fibonacci Numbers
    Plaza, Angel
    Smith, Jason L.
    Abel, Ulrich
    Bataille, Michel
    Boyadzhiev, Khristo N.
    Bradie, Brian
    Fedak, I. V.
    Fleischman, Dmitry
    Frontczak, Robert
    Ohtsuka, Hideyuki
    Schumacher, Raphael
    Stadler, Albert
    Terr, David
    [J]. FIBONACCI QUARTERLY, 2020, 58 (03): : 275 - 276
  • [34] On a conjecture about repdigits in k-generalized Fibonacci sequences
    Bravo, Jhon J.
    Luca, Florian
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 82 (3-4): : 623 - 639
  • [35] ON THE INTERSECTION OF TWO DISTINCT k-GENERALIZED FIBONACCI SEQUENCES
    Marques, Diego
    [J]. MATHEMATICA BOHEMICA, 2012, 137 (04): : 403 - 413
  • [36] Sums of reciprocals of Fibonacci numbers
    Herrmann, E
    [J]. FIBONACCI QUARTERLY, 2004, 42 (04): : 379 - 380
  • [37] On the zero-multiplicity of the k-generalized Fibonacci sequence
    Garcia, Jonathan
    Gomez, Carlos A.
    Luca, Florian
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2020, 26 (11-12) : 1564 - 1578
  • [38] The sum of the squares of two generalized Fibonacci numbers
    Howard, FT
    [J]. FIBONACCI QUARTERLY, 2003, 41 (01): : 80 - 84
  • [39] SUM FORMULAE OF GENERALIZED FIBONACCI AND LUCAS NUMBERS
    Cerin, Zvonko
    Bitim, Bahar Demirturk
    Keskin, Refik
    [J]. HONAM MATHEMATICAL JOURNAL, 2018, 40 (01): : 199 - 210
  • [40] ON CERTAIN SERIES OF RECIPROCALS OF FIBONACCI NUMBERS
    POPOV, BS
    [J]. FIBONACCI QUARTERLY, 1984, 22 (03): : 261 - 265