On the sum of the reciprocals of k-generalized Fibonacci numbers

被引:1
|
作者
Alahmadi, Adel [1 ]
Luca, Florian [1 ,2 ,3 ]
机构
[1] King Abdulaziz Univ, Res Grp Algebra Struct & Applicat, POB 1540, Jeddah, Saudi Arabia
[2] Univ Witwatersrand, Sch Maths, 1 Jan Smuts, ZA-2000 Johannesburg, South Africa
[3] Max Plack Inst Math, Bonn, Germany
关键词
Linearly recurrent sequences; Primary; 11B39;
D O I
10.2478/auom-2022-0002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we that if {F-n((k))}(n >= 0) denotes the k-generalized Fibonacci sequence then for n >= 2 the closest integer to the reciprocal of Sigma(m) (>=) (n) 1/F-m((k)) is F-n((k)) - F-n-1((k)).
引用
收藏
页码:31 / 42
页数:12
相关论文
共 50 条
  • [41] The proof of a conjecture concerning the intersection of k-generalized Fibonacci sequences
    Marques, Diego
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (03): : 455 - 468
  • [42] Sums of Reciprocals of Squares of Fibonacci Numbers
    Ohtsuka, Hideyuki
    [J]. FIBONACCI QUARTERLY, 2012, 50 (03): : 284 - 284
  • [43] Representation of integers by k-generalized Fibonacci sequences and applications in cryptography
    Badidja, Salim
    Mokhtar, Ahmed Ait
    Ozer, Ozen
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (09)
  • [44] The proof of a conjecture concerning the intersection of k-generalized Fibonacci sequences
    Diego Marques
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2013, 44 : 455 - 468
  • [45] The generalized Fibonacci numbers of order k
    Bobrovskiy, V. P.
    Bukharitsyna, L., V
    [J]. BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2012, 66 (02): : 40 - 49
  • [46] ON THE GENERALIZED k-FIBONACCI NUMBERS
    Falcon, Sergio
    [J]. MISKOLC MATHEMATICAL NOTES, 2021, 22 (01) : 193 - 199
  • [47] On the largest prime factor of the k-generalized Lucas numbers
    Batte, Herbert
    Luca, Florian
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (02):
  • [48] THE k-GENERALIZED LUCAS NUMBERS CLOSE TO A POWER OF 2
    Acikel, Abdullah
    Irmak, Nurettin
    Szalay, Laszlo
    [J]. MATHEMATICA SLOVACA, 2023, 73 (04) : 871 - 882
  • [49] ON SUMS OF RECIPROCALS OF FIBONACCI AND LUCAS-NUMBERS
    JENNINGS, D
    [J]. FIBONACCI QUARTERLY, 1994, 32 (01): : 18 - 21
  • [50] Transcendental series of reciprocals of Fibonacci and Lucas numbers
    Nguyen, Khoa Dang
    [J]. ALGEBRA & NUMBER THEORY, 2022, 16 (07) : 1627 - 1654