On the k-generalized fibonacci numbers and high-order linear recurrence relations

被引:12
|
作者
Yang, Sheng-liang [1 ]
机构
[1] Lanzhou Univ Technol, Dept Appl Math, Lanzhou 730050, Gansu, Peoples R China
关键词
k-generalized Fibonacci sequence; order-k linear homogeneous recurrence relation; elementary symmetric function; complete homogeneous symmetric function; determinant; companion matrix;
D O I
10.1016/j.amc.2007.07.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, using elementary symmetric function and complete homogeneous symmetric function, we obtain a determinant formula for the k-generalized Fibonacci sequence. The relationship between the k-generalized Fibonacci sequence and the order-k linear homogeneous recurrence relation has been investigated, and a general solution for the latter is also derived. Furthermore, we obtain an explicit expression for the elements in the nth power of the companion matrix in terms of k-generalized Fibonacci numbers. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:850 / 857
页数:8
相关论文
共 50 条
  • [31] ON THE DISCRIMINANT OF THE k-GENERALIZED FIBONACCI POLYNOMIAL, II
    Luca, Florian
    FIBONACCI QUARTERLY, 2024, 62 (03): : 193 - 200
  • [32] Diophantine Triples and k-Generalized Fibonacci Sequences
    Fuchs, Clemens
    Hutle, Christoph
    Luca, Florian
    Szalay, Laszlo
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (03) : 1449 - 1465
  • [33] On the generalized order-k Fibonacci and Lucas numbers
    Kilic, Emrah
    Tasci, Dursun
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2006, 36 (06) : 1915 - 1926
  • [34] AN EXPONENTIAL DIOPHANTINE EQUATION RELATED TO THE SUM OF POWERS OF TWO CONSECUTIVE k-GENERALIZED FIBONACCI NUMBERS
    Gomez Ruiz, Carlos Alexis
    Luca, Florian
    COLLOQUIUM MATHEMATICUM, 2014, 137 (02) : 171 - 188
  • [35] On a conjecture about repdigits in k-generalized Fibonacci sequences
    Bravo, Jhon J.
    Luca, Florian
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 82 (3-4): : 623 - 639
  • [36] ON THE INTERSECTION OF TWO DISTINCT k-GENERALIZED FIBONACCI SEQUENCES
    Marques, Diego
    MATHEMATICA BOHEMICA, 2012, 137 (04): : 403 - 413
  • [37] On the zero-multiplicity of the k-generalized Fibonacci sequence
    Garcia, Jonathan
    Gomez, Carlos A.
    Luca, Florian
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2020, 26 (11-12) : 1564 - 1578
  • [38] On the order-m generalized Fibonacci k-numbers
    Akbulak, Mehmet
    Bozkurt, Durmus
    CHAOS SOLITONS & FRACTALS, 2009, 42 (03) : 1347 - 1355
  • [39] On the usual Fibonacci and generalized order-k Pell numbers
    Kilic, Emrah
    ARS COMBINATORIA, 2008, 88 : 33 - 45
  • [40] Generalized k-order Fibonacci and Lucas hybrid numbers
    Asci, Mustafa
    Aydinyuz, Suleyman
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2021, 42 (08): : 1765 - 1782