FRACTIONAL EDGE DOMINATION IN GRAPHS

被引:4
|
作者
Arumugam, S. [1 ]
Jerry, Sithara [1 ]
机构
[1] Kalasalingam Univ, Natl Ctr Adv Res Discrete Math N CARDMATH, CGRF, Anand Nagar 626190, Krishnankoil, India
关键词
Edge dominating function; edge irredundant function; edge independent function; CONVEXITY;
D O I
10.2298/AADM0902359A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V,E) be a graph. A function f : E -> [0,1] is called an edge dominating function if Sigma(x is an element of N[e]) f(x) >= 1 for all e is an element of E(G), where N[e] is the closed neighbourhood of the edge e. An edge dominating function f is called minimal (MEDF) if for all functions g : E -> [0,1] with g < f, g is not an edge dominating function. The fractional edge domination number gamma'(f) and the upper fractional edge domination number Gamma'(f) are defined by gamma'f (G) = min{vertical bar f vertical bar : f is an MEDF of G} and Gamma'f (G) = max{vertical bar f vertical bar : f is an MEDF of G}, where vertical bar f vertical bar = Sigma(e is an element of E) f(e). Further we introduce the fractional parameters corres ponding to edge irredundance and edge in dependence, leading to the fract ional edge domination chain. We also consider topological properties of the set of all edge dominating functions of G.
引用
收藏
页码:359 / 370
页数:12
相关论文
共 50 条
  • [31] Edge lifting and total domination in graphs
    Wyatt J. Desormeaux
    Teresa W. Haynes
    Michael A. Henning
    Journal of Combinatorial Optimization, 2013, 25 : 47 - 59
  • [32] Matching Transversal Edge Domination in Graphs
    Alwardi, Anwar
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2016, 11 (02): : 919 - 929
  • [33] Signed edge domination numbers of graphs
    Ao, Guoyan
    Hongxia
    Renyuan
    Jirimutu
    UTILITAS MATHEMATICA, 2014, 93 : 323 - 331
  • [34] Two classes of edge domination in graphs
    Xu, Baogen
    DISCRETE APPLIED MATHEMATICS, 2006, 154 (10) : 1541 - 1546
  • [35] Vertex-edge domination in graphs
    Razika Boutrig
    Mustapha Chellali
    Teresa W. Haynes
    Stephen T. Hedetniemi
    Aequationes mathematicae, 2016, 90 : 355 - 366
  • [36] Vertex-edge domination in graphs
    Boutrig, Razika
    Chellali, Mustapha
    Haynes, Teresa W.
    Hedetniemi, Stephen T.
    AEQUATIONES MATHEMATICAE, 2016, 90 (02) : 355 - 366
  • [37] Weak edge Roman domination in graphs
    Pushpam, P. Roushini Leely
    Mai, T. N. M. Malini
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2011, 51 : 125 - 138
  • [38] EDGE DOMINATION IN COMPLETE PARTITE GRAPHS
    CHEN, BL
    FU, HL
    DISCRETE MATHEMATICS, 1994, 132 (1-3) : 29 - 35
  • [39] Rainbow edge domination numbers in graphs
    Ahangar, H. Abdollahzadeh
    Jahani, H.
    Rad, N. Jafari
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (07)
  • [40] THE DIAMETER OF EDGE DOMINATION CRITICAL GRAPHS
    PARIS, M
    NETWORKS, 1994, 24 (04) : 261 - 262