FRACTIONAL EDGE DOMINATION IN GRAPHS

被引:4
|
作者
Arumugam, S. [1 ]
Jerry, Sithara [1 ]
机构
[1] Kalasalingam Univ, Natl Ctr Adv Res Discrete Math N CARDMATH, CGRF, Anand Nagar 626190, Krishnankoil, India
关键词
Edge dominating function; edge irredundant function; edge independent function; CONVEXITY;
D O I
10.2298/AADM0902359A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V,E) be a graph. A function f : E -> [0,1] is called an edge dominating function if Sigma(x is an element of N[e]) f(x) >= 1 for all e is an element of E(G), where N[e] is the closed neighbourhood of the edge e. An edge dominating function f is called minimal (MEDF) if for all functions g : E -> [0,1] with g < f, g is not an edge dominating function. The fractional edge domination number gamma'(f) and the upper fractional edge domination number Gamma'(f) are defined by gamma'f (G) = min{vertical bar f vertical bar : f is an MEDF of G} and Gamma'f (G) = max{vertical bar f vertical bar : f is an MEDF of G}, where vertical bar f vertical bar = Sigma(e is an element of E) f(e). Further we introduce the fractional parameters corres ponding to edge irredundance and edge in dependence, leading to the fract ional edge domination chain. We also consider topological properties of the set of all edge dominating functions of G.
引用
收藏
页码:359 / 370
页数:12
相关论文
共 50 条
  • [41] Local edge domination critical graphs
    Discrete Math, 1-3 (175):
  • [42] EDGE DOMINATION ON BIPARITE PERMUTATION GRAPHS AND COTRIANGULATED GRAPHS
    SRINIVASAN, A
    MADHUKAR, K
    NAGAVAMSI, P
    RANGAN, CP
    CHANG, MS
    INFORMATION PROCESSING LETTERS, 1995, 56 (03) : 165 - 171
  • [43] On the signed edge domination number of graphs
    Akbari, S.
    Bolouki, S.
    Hatami, P.
    Siami, M.
    DISCRETE MATHEMATICS, 2009, 309 (03) : 587 - 594
  • [44] Vertex-edge domination in graphs
    Paweł Żyliński
    Aequationes mathematicae, 2019, 93 : 735 - 742
  • [45] Global Domination Edge Critical Graphs
    Desormeaux, Wyatt J.
    Haynest, Teresa W.
    van der Merwe, Lucas
    UTILITAS MATHEMATICA, 2017, 104 : 151 - 160
  • [46] Edge lifting and Roman domination in graphs
    Meraimi, Hicham
    Chellali, Mustapha
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (05)
  • [47] NONNEGATIVE SIGNED EDGE DOMINATION IN GRAPHS
    Dehgardi, N.
    Volkmann, L.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2019, 43 (01): : 31 - 47
  • [48] EFFICIENT EDGE DOMINATION PROBLEMS IN GRAPHS
    GRINSTEAD, DL
    SLATER, PJ
    SHERWANI, NA
    HOLMES, ND
    INFORMATION PROCESSING LETTERS, 1993, 48 (05) : 221 - 228
  • [49] Vertex-edge domination in graphs
    Zylinski, Pawel
    AEQUATIONES MATHEMATICAE, 2019, 93 (04) : 735 - 742
  • [50] Local edge domination critical graphs
    Henning, MA
    Oellermann, OR
    Swart, HC
    DISCRETE MATHEMATICS, 1996, 161 (1-3) : 175 - 184