FRACTIONAL EDGE DOMINATION IN GRAPHS

被引:4
|
作者
Arumugam, S. [1 ]
Jerry, Sithara [1 ]
机构
[1] Kalasalingam Univ, Natl Ctr Adv Res Discrete Math N CARDMATH, CGRF, Anand Nagar 626190, Krishnankoil, India
关键词
Edge dominating function; edge irredundant function; edge independent function; CONVEXITY;
D O I
10.2298/AADM0902359A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V,E) be a graph. A function f : E -> [0,1] is called an edge dominating function if Sigma(x is an element of N[e]) f(x) >= 1 for all e is an element of E(G), where N[e] is the closed neighbourhood of the edge e. An edge dominating function f is called minimal (MEDF) if for all functions g : E -> [0,1] with g < f, g is not an edge dominating function. The fractional edge domination number gamma'(f) and the upper fractional edge domination number Gamma'(f) are defined by gamma'f (G) = min{vertical bar f vertical bar : f is an MEDF of G} and Gamma'f (G) = max{vertical bar f vertical bar : f is an MEDF of G}, where vertical bar f vertical bar = Sigma(e is an element of E) f(e). Further we introduce the fractional parameters corres ponding to edge irredundance and edge in dependence, leading to the fract ional edge domination chain. We also consider topological properties of the set of all edge dominating functions of G.
引用
收藏
页码:359 / 370
页数:12
相关论文
共 50 条
  • [21] Towards the Conjecture on Domination Versus Edge Domination in Graphs
    Paras Maniya
    Dinabandhu Pradhan
    Bulletin of the Malaysian Mathematical Sciences Society, 2024, 47
  • [22] On domination game stable graphs and domination game edge-critical graphs
    Xu, Kexiang
    Li, Xia
    DISCRETE APPLIED MATHEMATICS, 2018, 250 : 47 - 56
  • [23] Fractional Domination of the Cartesian Products in Graphs
    Baogen XU
    JournalofMathematicalResearchwithApplications, 2015, 35 (03) : 279 - 284
  • [24] On signed edge domination numbers of graphs
    Xu, BG
    DISCRETE MATHEMATICS, 2001, 239 (1-3) : 179 - 189
  • [25] Efficient edge domination in regular graphs
    Cardoso, Domingos M.
    Cerdeira, J. Orestes
    Delorme, Charles
    Silva, Pedro C.
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (15) : 3060 - 3065
  • [26] Signed Majority Edge Domination in Graphs
    Xing, Hua-Ming
    Liu, Aiping
    Huang, Zhong-Sheng
    UTILITAS MATHEMATICA, 2010, 83 : 255 - 264
  • [27] Double domination edge critical graphs
    Haynes, Teresa W.
    Thacker, Derrick
    UTILITAS MATHEMATICA, 2009, 78 : 139 - 149
  • [28] The edge domination number of connected graphs
    Chaemchan, Araya
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2010, 48 : 185 - 189
  • [29] Edge lifting and total domination in graphs
    Desormeaux, Wyatt J.
    Haynes, Teresa W.
    Henning, Michael A.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 25 (01) : 47 - 59
  • [30] EDGE ISOLATED DOMINATION FOR JAHANGIR GRAPHS
    Sumathi, P.
    Felicia, R. Esther
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 20 (09): : 1843 - 1850