Matching Transversal Edge Domination in Graphs

被引:0
|
作者
Alwardi, Anwar [1 ]
机构
[1] Univ Mysore, Dept Studies Math, Manasagangotri 570006, Mysuru, India
关键词
Dominating set; Matching set; matching transversal dominating set; Matching transversal domination;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V,E) be a graph. A subset X of E is called an edge dominating set of G if every edge in EX. is adjacent to some edge in X. An edge dominating set which intersects every maximum matching in G is called matching transversal edge dominating set. The minimum cardinality of a matching transversal edge dominating set is called the matching transversal edge domination number of G and is denoted by gamma(mt)(G). In this paper, we begin an investigation of this parameter.
引用
收藏
页码:919 / 929
页数:11
相关论文
共 50 条
  • [1] On chromatic transversal domination in graphs
    Arumugam, S.
    Raja Chandrasekar, K.
    [J]. Journal of Combinatorial Mathematics and Combinatorial Computing, 2012, 83 : 13 - 21
  • [2] MATCHING PROPERTIES IN DOUBLE DOMINATION EDGE CRITICAL GRAPHS
    Wang, Haichao
    Kang, Liying
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2010, 2 (02) : 151 - 160
  • [3] Transversal Hop Domination in Graphs
    Bonsocan, Maria Andrea O.
    Jamil, Ferdinand P.
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (01): : 192 - 206
  • [4] Transversal total domination in graphs
    Nayaka, S.R.
    Alwardi, Anwar
    Puttaswamy
    [J]. 1600, Charles Babbage Research Centre (112): : 231 - 240
  • [5] INDEPENDENT TRANSVERSAL DOMINATION IN GRAPHS
    Hamid, Ismail Sahul
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (01) : 5 - 17
  • [6] Maximal matching and edge domination in complete multipartite graphs
    Song, Wenyao
    Miao, Lianying
    Wang, Haichao
    Zhao, Yancai
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (05) : 857 - 862
  • [7] Chromatic transversal Roman domination in graphs
    Pushpam, P. Roushini Leely
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024, 9 (01) : 51 - 66
  • [8] ON NEIGHBOURHOOD TRANSVERSAL DOMINATION OF SOME GRAPHS
    Cotejo, Nina Mae G.
    Benacer, Eva D.
    [J]. ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2021, 28 (02): : 205 - 215
  • [9] Transversal total hop domination in graphs
    Bonsocan, Maria Andrea O.
    Jamil, Ferdinand P.
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (07)
  • [10] On graphs with equal chromatic transversal domination and connected domination numbers
    Ayyaswamy, Singaraj Kulandaiswamy
    Natarajan, Chidambaram
    Venkatakrishnan, Yanamandram Balasubramanian
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 27 (04): : 843 - 849