Transversal total hop domination in graphs

被引:0
|
作者
Bonsocan, Maria Andrea O. [1 ]
Jamil, Ferdinand P. [2 ]
机构
[1] Mindanao State Univ, CSM, Iligan Inst Technol, Dept Math & Stat, Iligan 9200, Philippines
[2] Mindanao State Univ, Iligan Inst Technol, Dept Math & Stat, CSM,Ctr Math & Theoret Phys Sci,PRISM, Iligan 9200, Philippines
关键词
Total hop dominating set; transversal total hop dominating set; transversal total hop domination number; SETS;
D O I
10.1142/S1793830923500957
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finite simple graph. A set S subset of V (G) is a total hop dominating set of G if for every v is an element of V (G), there exists u is an element of S such that d(G)(u,v) = 2. Any total hop dominating set of G of minimum cardinality is a gamma(th)-set of G. A total hop dominating set S of G which intersects every gamma(th)-set of G is a transversal total hop dominating set. The minimum cardinality (gamma)over cap(th)(G) of a transversal total hop dominating set in G is the transversal total hop domination number of G. In this paper, we initiate the study of transversal total hop domination in graphs. First, we characterize a graph G of order n for which (gamma)over cap(th)(G) is n or n - 1, and also we determine the specific values of (gamma)over cap(th)(G) for some special graphs G. Next, we solve some realization problems involving (gamma)over cap(th)(G) with other parameters of G. Finally, we investigate the transversal total hop domination in the complementary prism, corona, and lexicographic product of graphs.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Transversal Hop Domination in Graphs
    Bonsocan, Maria Andrea O.
    Jamil, Ferdinand P.
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (01): : 192 - 206
  • [2] Transversal total domination in graphs
    Nayaka, S.R.
    Alwardi, Anwar
    Puttaswamy
    [J]. 1600, Charles Babbage Research Centre (112): : 231 - 240
  • [3] Hop total Roman domination in graphs
    Abdollahzadeh Ahangar, H.
    Chellali, M.
    Sheikholeslami, S. M.
    Soroudi, M.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2023, 20 (01) : 73 - 78
  • [4] On the independence transversal total domination number of graphs
    Cabrera Martinez, Abel
    Sigarreta Almira, Jose M.
    Yero, Ismael G.
    [J]. DISCRETE APPLIED MATHEMATICS, 2017, 219 : 65 - 73
  • [5] On Total Domination and Hop Domination in Diamond-Free Graphs
    Chen, Xue-gang
    Wang, Yu-feng
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (02) : 1885 - 1891
  • [6] On Total Domination and Hop Domination in Diamond-Free Graphs
    Xue-gang Chen
    Yu-feng Wang
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 1885 - 1891
  • [7] Revisiting Domination, Hop Domination, and Global Hop Domination in Graphs
    Salasalan, Gemma
    Canoy Jr, Sergio R.
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, 14 (04): : 1415 - 1428
  • [8] On chromatic transversal domination in graphs
    Arumugam, S.
    Raja Chandrasekar, K.
    [J]. Journal of Combinatorial Mathematics and Combinatorial Computing, 2012, 83 : 13 - 21
  • [9] INDEPENDENT TRANSVERSAL DOMINATION IN GRAPHS
    Hamid, Ismail Sahul
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (01) : 5 - 17
  • [10] Hop Independent Hop Domination in Graphs
    Hassan, Javier A.
    Canoy, Sergio R.
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (04): : 1783 - 1796