On graphs with equal chromatic transversal domination and connected domination numbers

被引:0
|
作者
Ayyaswamy, Singaraj Kulandaiswamy [1 ]
Natarajan, Chidambaram [1 ]
Venkatakrishnan, Yanamandram Balasubramanian [1 ]
机构
[1] Sastra Univ, Sch Humanities & Sci, Dept Math, Tanjore 613401, Tamil Nadu, India
来源
关键词
domination number; connected domination number; chromatic transversal domination number;
D O I
10.4134/CKMS.2012.27.4.843
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G - (V, E) be a graph with chromatic number chi(G). A dominating set D of G is called a chromatic transversal dominating set (ctd-set) if D intersects every color class of every chi-partition of G. The minimum cardinality of a ctd-set of G is called the chromatic transversal domination number of G and is denoted by gamma ct(G). In this paper we characterize the class of trees, unicyclic graphs and cubic graphs for which the chromatic transversal domination number is equal to the connected domination number
引用
收藏
页码:843 / 849
页数:7
相关论文
共 50 条
  • [1] On graphs with equal domination and connected domination numbers
    Arumugam, S
    Joseph, JP
    [J]. DISCRETE MATHEMATICS, 1999, 206 (1-3) : 45 - 49
  • [2] Characterization of graphs with equal domination and connected domination numbers
    Chen, XG
    Sun, L
    Xing, HM
    [J]. DISCRETE MATHEMATICS, 2004, 289 (1-3) : 129 - 135
  • [3] On graphs with equal total domination and connected domination numbers
    Chen, XG
    [J]. APPLIED MATHEMATICS LETTERS, 2006, 19 (05) : 472 - 477
  • [4] On chromatic transversal domination in graphs
    Arumugam, S.
    Raja Chandrasekar, K.
    [J]. Journal of Combinatorial Mathematics and Combinatorial Computing, 2012, 83 : 13 - 21
  • [5] Chromatic transversal Roman domination in graphs
    Pushpam, P. Roushini Leely
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024, 9 (01) : 51 - 66
  • [6] Chromatic connected domination in graphs
    Balamurugan, S.
    Anitha, M.
    Kalaiselvi, S.
    [J]. JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2019, 22 (05): : 753 - 760
  • [7] GRAPHS WITH EQUAL DOMINATION AND CERTIFIED DOMINATION NUMBERS
    Dettlaff, Magda
    Lemanska, Magdalena
    Miotk, Mateusz
    Topp, Jerzy
    Ziemann, Radoslaw
    Zylinski, Pawel
    [J]. OPUSCULA MATHEMATICA, 2019, 39 (06) : 815 - 827
  • [8] Graphs with equal domination and independent domination numbers
    Gupta, Purnima
    Singh, Rajesh
    Arumugam, S.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (02) : 691 - 696
  • [9] ON GRAPHS WITH EQUAL DOMINATION AND INDEPENDENT DOMINATION NUMBERS
    TOPP, J
    VOLKMANN, L
    [J]. DISCRETE MATHEMATICS, 1991, 96 (01) : 75 - 80
  • [10] On graphs with equal domination and 2-domination numbers
    Hansberg, Adriana
    Volkmann, Lutz
    [J]. DISCRETE MATHEMATICS, 2008, 308 (11) : 2277 - 2281