On graphs with equal chromatic transversal domination and connected domination numbers

被引:0
|
作者
Ayyaswamy, Singaraj Kulandaiswamy [1 ]
Natarajan, Chidambaram [1 ]
Venkatakrishnan, Yanamandram Balasubramanian [1 ]
机构
[1] Sastra Univ, Sch Humanities & Sci, Dept Math, Tanjore 613401, Tamil Nadu, India
来源
关键词
domination number; connected domination number; chromatic transversal domination number;
D O I
10.4134/CKMS.2012.27.4.843
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G - (V, E) be a graph with chromatic number chi(G). A dominating set D of G is called a chromatic transversal dominating set (ctd-set) if D intersects every color class of every chi-partition of G. The minimum cardinality of a ctd-set of G is called the chromatic transversal domination number of G and is denoted by gamma ct(G). In this paper we characterize the class of trees, unicyclic graphs and cubic graphs for which the chromatic transversal domination number is equal to the connected domination number
引用
收藏
页码:843 / 849
页数:7
相关论文
共 50 条
  • [21] Graphs and their complements with equal total domination numbers
    1600, Charles Babbage Research Centre (87):
  • [22] On graphs with equal domination and edge independence numbers
    Volkmann, L
    ARS COMBINATORIA, 1995, 41 : 45 - 56
  • [23] Unicyclic graphs with equal total and total outer-connected domination numbers
    Raczek, Joanna
    ARS COMBINATORIA, 2015, 118 : 167 - 178
  • [24] On graphs having equal domination and codomination numbers
    Brigham, RC
    Dutton, RD
    Harary, F
    Haynes, TW
    UTILITAS MATHEMATICA, 1996, 50 : 53 - 64
  • [25] DOUBLY CONNECTED DOMINATION SUBDIVISION NUMBERS OF GRAPHS
    Karami, H.
    Khoeilar, R.
    Sheikholeslami, S. M.
    MATEMATICKI VESNIK, 2012, 64 (03): : 232 - 239
  • [26] On connected k-domination numbers, of graphs
    Li, SG
    DISCRETE MATHEMATICS, 2004, 274 (1-3) : 303 - 310
  • [27] Claw-Free Graphs with Equal 2-Domination and Domination Numbers
    Hansberg, Adriana
    Randerath, Bert
    Volkmann, Lutz
    FILOMAT, 2016, 30 (10) : 2795 - 2801
  • [28] Graphs with equal secure total domination and inverse secure total domination numbers
    Kulli, V. R.
    Chaluvaraju, B.
    Kumara, M.
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2018, 39 (02): : 467 - 473
  • [29] DOMINATION AND INDEPENDENT DOMINATION NUMBERS OF GRAPHS
    SEIFTER, N
    ARS COMBINATORIA, 1994, 38 : 119 - 128
  • [30] Trees with equal domination and restrained domination numbers
    Dankelmann, P
    Hattingh, JH
    Henning, MA
    Swart, HC
    JOURNAL OF GLOBAL OPTIMIZATION, 2006, 34 (04) : 597 - 607