Matching Transversal Edge Domination in Graphs

被引:0
|
作者
Alwardi, Anwar [1 ]
机构
[1] Univ Mysore, Dept Studies Math, Manasagangotri 570006, Mysuru, India
关键词
Dominating set; Matching set; matching transversal dominating set; Matching transversal domination;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V,E) be a graph. A subset X of E is called an edge dominating set of G if every edge in EX. is adjacent to some edge in X. An edge dominating set which intersects every maximum matching in G is called matching transversal edge dominating set. The minimum cardinality of a matching transversal edge dominating set is called the matching transversal edge domination number of G and is denoted by gamma(mt)(G). In this paper, we begin an investigation of this parameter.
引用
收藏
页码:919 / 929
页数:11
相关论文
共 50 条
  • [41] Efficient edge domination in regular graphs
    Cardoso, Domingos M.
    Cerdeira, J. Orestes
    Delorme, Charles
    Silva, Pedro C.
    [J]. DISCRETE APPLIED MATHEMATICS, 2008, 156 (15) : 3060 - 3065
  • [42] The edge domination number of connected graphs
    Chaemchan, Araya
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2010, 48 : 185 - 189
  • [43] Edge lifting and total domination in graphs
    Desormeaux, Wyatt J.
    Haynes, Teresa W.
    Henning, Michael A.
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 25 (01) : 47 - 59
  • [44] EDGE ISOLATED DOMINATION FOR JAHANGIR GRAPHS
    Sumathi, P.
    Felicia, R. Esther
    [J]. ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 20 (09): : 1843 - 1850
  • [45] Edge lifting and total domination in graphs
    Wyatt J. Desormeaux
    Teresa W. Haynes
    Michael A. Henning
    [J]. Journal of Combinatorial Optimization, 2013, 25 : 47 - 59
  • [46] Two classes of edge domination in graphs
    Xu, Baogen
    [J]. DISCRETE APPLIED MATHEMATICS, 2006, 154 (10) : 1541 - 1546
  • [47] Vertex-edge domination in graphs
    Razika Boutrig
    Mustapha Chellali
    Teresa W. Haynes
    Stephen T. Hedetniemi
    [J]. Aequationes mathematicae, 2016, 90 : 355 - 366
  • [48] Signed edge domination numbers of graphs
    Ao, Guoyan
    Hongxia
    Renyuan
    Jirimutu
    [J]. UTILITAS MATHEMATICA, 2014, 93 : 323 - 331
  • [49] Vertex-edge domination in graphs
    Boutrig, Razika
    Chellali, Mustapha
    Haynes, Teresa W.
    Hedetniemi, Stephen T.
    [J]. AEQUATIONES MATHEMATICAE, 2016, 90 (02) : 355 - 366
  • [50] Weak edge Roman domination in graphs
    Pushpam, P. Roushini Leely
    Mai, T. N. M. Malini
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2011, 51 : 125 - 138