Vertex-edge domination in graphs

被引:37
|
作者
Boutrig, Razika [1 ,2 ]
Chellali, Mustapha [2 ]
Haynes, Teresa W. [3 ,4 ]
Hedetniemi, Stephen T. [5 ]
机构
[1] Univ Boumerdes, Fac Econ Sci & Management, Boumerdas, Algeria
[2] Univ Blida, Dept Math, LAMDA RO Lab, BP 270, Blida, Algeria
[3] E Tennessee State Univ, Dept Math, Johnson City, TN 37614 USA
[4] Univ Johannesburg, Dept Math, Auckland Pk, South Africa
[5] Clemson Univ, Sch Comp, Clemson, SC 29634 USA
关键词
Vertex-edge domination; domination; tree;
D O I
10.1007/s00010-015-0354-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study graph parameters related to vertex-edge domination, where a vertex dominates the edges incident to it as well as the edges adjacent to these incident edges. First, we present new relationships relating the ve-domination to some other domination parameters, answering in the affirmative four open questions posed in the 2007 PhD thesis by Lewis. Then we provide an upper bound for the independent ve-domination number in terms of the ve-domination number for every nontrivial connected K (1,k) -free graph, with k a parts per thousand yen 3, and we show that the independent ve-domination number is bounded above by the domination number for every nontrivial tree. Finally, we establish an upper bound on the ve-domination number for connected C (5)-free graphs, improving a recent bound given for trees.
引用
收藏
页码:355 / 366
页数:12
相关论文
共 50 条
  • [1] Vertex-edge domination in graphs
    Paweł Żyliński
    [J]. Aequationes mathematicae, 2019, 93 : 735 - 742
  • [2] Vertex-edge domination in graphs
    Razika Boutrig
    Mustapha Chellali
    Teresa W. Haynes
    Stephen T. Hedetniemi
    [J]. Aequationes mathematicae, 2016, 90 : 355 - 366
  • [3] Vertex-edge domination in graphs
    Zylinski, Pawel
    [J]. AEQUATIONES MATHEMATICAE, 2019, 93 (04) : 735 - 742
  • [4] Vertex-edge domination in cubic graphs
    Ziemann, Radoslaw
    Zylinski, Pawel
    [J]. DISCRETE MATHEMATICS, 2020, 343 (11)
  • [5] Vertex-edge domination in unit disk graphs
    Jena, Sangram K.
    Das, Gautam K.
    [J]. DISCRETE APPLIED MATHEMATICS, 2022, 319 : 351 - 361
  • [6] Vertex-edge domination in unit disk graphs
    Jena, Sangram K.
    Das, Gautam K.
    [J]. Discrete Applied Mathematics, 2022, 319 : 351 - 361
  • [7] Results on vertex-edge and independent vertex-edge domination
    Subhabrata Paul
    Keshav Ranjan
    [J]. Journal of Combinatorial Optimization, 2022, 44 : 303 - 330
  • [8] Vertex-Edge Domination
    Lewis, Jason
    Hedetniemi, Stephen T.
    Haynes, Teresa W.
    Fricke, Gerd H.
    [J]. UTILITAS MATHEMATICA, 2010, 81 : 193 - 213
  • [9] Vertex-Edge Domination in Interval and Bipartite Permutation Graphs
    Paul, Subhabrata
    Pradhan, Dinabandhu
    Verma, Shaily
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2023, 43 (04) : 947 - 963
  • [10] Vertex-edge Roman domination in graphs: Complexity and algorithms
    Kumar, Manjay
    Reddy, P. Venkata Subba
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, : 23 - 37