Vertex-edge domination in cubic graphs

被引:4
|
作者
Ziemann, Radoslaw [1 ]
Zylinski, Pawel [1 ]
机构
[1] Univ Gdansk, Fac Math Phys & Informat, PL-80308 Gdansk, Poland
关键词
vertex-edge domination; cubic graph; discharging method; linear programming; NUMBER;
D O I
10.1016/j.disc.2020.112075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish that any connected cubic graph of order n > 6 has a minimum vertex- edge dominating set of at most 10n/31 vertices, thus affirmatively answering the open question posed by Klostermeyer et al. in Discussiones Mathematicae Graph Theory, https://doi.org/10.7151/dmgt.2175. On the other hand, we present an infinite family of cubic graphs whose gamma(ve) ratio is equal to 2/7. Finally, we show that the problem of determining the minimum gamma(ve)-dominating set is NP-hard even in cubic planar graphs. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Vertex-edge domination in graphs
    Boutrig, Razika
    Chellali, Mustapha
    Haynes, Teresa W.
    Hedetniemi, Stephen T.
    [J]. AEQUATIONES MATHEMATICAE, 2016, 90 (02) : 355 - 366
  • [2] Vertex-edge domination in graphs
    Paweł Żyliński
    [J]. Aequationes mathematicae, 2019, 93 : 735 - 742
  • [3] Vertex-edge domination in graphs
    Razika Boutrig
    Mustapha Chellali
    Teresa W. Haynes
    Stephen T. Hedetniemi
    [J]. Aequationes mathematicae, 2016, 90 : 355 - 366
  • [4] Vertex-edge domination in graphs
    Zylinski, Pawel
    [J]. AEQUATIONES MATHEMATICAE, 2019, 93 (04) : 735 - 742
  • [5] Vertex-edge domination in unit disk graphs
    Jena, Sangram K.
    Das, Gautam K.
    [J]. DISCRETE APPLIED MATHEMATICS, 2022, 319 : 351 - 361
  • [6] Vertex-edge domination in unit disk graphs
    Jena, Sangram K.
    Das, Gautam K.
    [J]. Discrete Applied Mathematics, 2022, 319 : 351 - 361
  • [7] Results on vertex-edge and independent vertex-edge domination
    Subhabrata Paul
    Keshav Ranjan
    [J]. Journal of Combinatorial Optimization, 2022, 44 : 303 - 330
  • [8] Vertex-Edge Domination
    Lewis, Jason
    Hedetniemi, Stephen T.
    Haynes, Teresa W.
    Fricke, Gerd H.
    [J]. UTILITAS MATHEMATICA, 2010, 81 : 193 - 213
  • [9] Vertex-Edge Domination in Interval and Bipartite Permutation Graphs
    Paul, Subhabrata
    Pradhan, Dinabandhu
    Verma, Shaily
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2023, 43 (04) : 947 - 963
  • [10] Vertex-edge Roman domination in graphs: Complexity and algorithms
    Kumar, Manjay
    Reddy, P. Venkata Subba
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, : 23 - 37