Results on vertex-edge and independent vertex-edge domination

被引:0
|
作者
Subhabrata Paul
Keshav Ranjan
机构
[1] IIT Patna,Department of Mathematics
[2] IIT Madras,Department of Computer Science and Engineering
来源
关键词
Vertex-edge domination; Independent vertex-edge domination; NP-completeness;
D O I
暂无
中图分类号
学科分类号
摘要
Given a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V,E)$$\end{document}, a vertex u∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u \in V$$\end{document}ve-dominates all edges incident to any vertex of NG[u]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_G[u]$$\end{document}. A set S⊆V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \subseteq V$$\end{document} is a ve-dominating set if for all edges e∈E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e\in E$$\end{document}, there exists a vertex u∈S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u \in S$$\end{document} such that u ve-dominates e. Lewis (Vertex-edge and edge-vertex parameters in graphs. Ph.D. thesis, Clemson, SC, USA, 2007) proposed a linear time algorithm for ve-domination problem for trees. In this paper, we have constructed an example where the algorithm proposed by Lewis, fails. We have proposed linear time algorithms for ve-domination and independent ve-domination problem in block graphs, which is a superclass of trees. We have also proposed a linear time algorithm for weighted ve-domination problem in trees. We have also proved that finding minimum ve-dominating set is NP-complete for undirected path graphs. Finally, we have characterized the trees with equal ve-domination and independent ve-domination number.
引用
收藏
页码:303 / 330
页数:27
相关论文
共 50 条
  • [1] Results on vertex-edge and independent vertex-edge domination
    Paul, Subhabrata
    Ranjan, Keshav
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (01) : 303 - 330
  • [2] Vertex-Edge Domination
    Lewis, Jason
    Hedetniemi, Stephen T.
    Haynes, Teresa W.
    Fricke, Gerd H.
    [J]. UTILITAS MATHEMATICA, 2010, 81 : 193 - 213
  • [3] Vertex-edge domination in graphs
    Boutrig, Razika
    Chellali, Mustapha
    Haynes, Teresa W.
    Hedetniemi, Stephen T.
    [J]. AEQUATIONES MATHEMATICAE, 2016, 90 (02) : 355 - 366
  • [4] Vertex-edge domination in graphs
    Paweł Żyliński
    [J]. Aequationes mathematicae, 2019, 93 : 735 - 742
  • [5] Vertex-edge domination in graphs
    Razika Boutrig
    Mustapha Chellali
    Teresa W. Haynes
    Stephen T. Hedetniemi
    [J]. Aequationes mathematicae, 2016, 90 : 355 - 366
  • [6] Total vertex-edge domination
    Boutrig, Razika
    Chellali, Mustapha
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (09) : 1820 - 1828
  • [7] VERTEX-EDGE ROMAN DOMINATION
    Kumar, H. Naresh
    Venkatakrishnan, Y. B.
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (05): : 685 - 698
  • [8] Vertex-edge domination in graphs
    Zylinski, Pawel
    [J]. AEQUATIONES MATHEMATICAE, 2019, 93 (04) : 735 - 742
  • [9] ON TOTAL VERTEX-EDGE DOMINATION
    Sahin, B.
    Sahin, A.
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (01): : 128 - 133
  • [10] DOUBLE VERTEX-EDGE DOMINATION IN TREES
    Chen, Xue-Gang
    Sohn, Moo Young
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (01) : 167 - 177