VERTEX-EDGE ROMAN DOMINATION

被引:2
|
作者
Kumar, H. Naresh [1 ]
Venkatakrishnan, Y. B. [1 ]
机构
[1] Sastra Deemed Univ, Sch Arts Sci & Humanities, Dept Math, Thanjavur 613401, India
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2021年 / 45卷 / 05期
关键词
Vertex-edge roman dominating set; edge dominating set; trees; BOUNDS;
D O I
10.46793/KgJMat2105.685K
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A vertex-edge Roman dominating function (or just ve-RDF) of a graph G = (V, E) is a function f : V (G) -> {0, 1, 2} such that for each edge e = uv either max{f(u), f(v)} not equal 0 or there exists a vertex w such that either wu is an element of E or wv is an element of E and f(w) = 2. The weight of a ve-RDF is the sum of its function values over all vertices. The vertex-edge Roman domination number of a graph G, denoted by gamma(veR)(G), is the minimum weight of a ve-RDF G. In this paper, we initiate a study of vertex-edge Roman dominaton. We first show that determining the number gamma(veR)(G) is NP-complete even for bipartite graphs. Then we show that if T is a tree different from a star with order n, l leaves and s support vertices, then gamma(veR)(T) >= (n - l - s + 3)/2, and we characterize the trees attaining this lower bound. Finally, we provide a characterization of all trees with gamma(veR)(T) = 2 gamma'(T), where gamma'(T) is the edge domination number of T.
引用
收藏
页码:685 / 698
页数:14
相关论文
共 50 条
  • [1] Vertex-edge perfect Roman domination number
    Al Subaiei, Bana
    AlMulhim, Ahlam
    Akwu, Abolape Deborah
    [J]. AIMS MATHEMATICS, 2023, 8 (09): : 21472 - 21483
  • [2] Results on vertex-edge and independent vertex-edge domination
    Subhabrata Paul
    Keshav Ranjan
    [J]. Journal of Combinatorial Optimization, 2022, 44 : 303 - 330
  • [3] Vertex-edge Roman domination in graphs: Complexity and algorithms
    Kumar, Manjay
    Reddy, P. Venkata Subba
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, : 23 - 37
  • [4] Vertex-Edge Domination
    Lewis, Jason
    Hedetniemi, Stephen T.
    Haynes, Teresa W.
    Fricke, Gerd H.
    [J]. UTILITAS MATHEMATICA, 2010, 81 : 193 - 213
  • [5] Results on vertex-edge and independent vertex-edge domination
    Paul, Subhabrata
    Ranjan, Keshav
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (01) : 303 - 330
  • [6] Vertex-edge domination in graphs
    Boutrig, Razika
    Chellali, Mustapha
    Haynes, Teresa W.
    Hedetniemi, Stephen T.
    [J]. AEQUATIONES MATHEMATICAE, 2016, 90 (02) : 355 - 366
  • [7] Vertex-edge domination in graphs
    Paweł Żyliński
    [J]. Aequationes mathematicae, 2019, 93 : 735 - 742
  • [8] Vertex-edge domination in graphs
    Razika Boutrig
    Mustapha Chellali
    Teresa W. Haynes
    Stephen T. Hedetniemi
    [J]. Aequationes mathematicae, 2016, 90 : 355 - 366
  • [9] Total vertex-edge domination
    Boutrig, Razika
    Chellali, Mustapha
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (09) : 1820 - 1828
  • [10] Vertex-edge domination in graphs
    Zylinski, Pawel
    [J]. AEQUATIONES MATHEMATICAE, 2019, 93 (04) : 735 - 742