Vertex-edge perfect Roman domination number

被引:2
|
作者
Al Subaiei, Bana [1 ]
AlMulhim, Ahlam [1 ]
Akwu, Abolape Deborah [2 ]
机构
[1] King Faisal Univ, Coll Sci, Dept Math & Stat, POB 400, Al Hasa 31982, Saudi Arabia
[2] Fed Univ Agr, Coll Sci, Dept Math, Makurdi, Nigeria
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 09期
关键词
vertex-edge perfect domination number; trees; cycles; Petersen graph; bipartite graph;
D O I
10.3934/math.20231094
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A vertex-edge perfect Roman dominating function on a graph G = (V, E) (denoted by vePRDF) is a function f : V (G) -& RARR; {0, 1, 2} such that for every edge uv & ISIN; E, max{ f(u), f(v)} # 0, or u is adjacent to exactly one neighbor w such that f(w) = 2, or v is adjacent to exactly one neighbor w such that f(w) = 2. The weight of a ve-PRDF on G is the sum w(f) = Zv & ISIN;V f (v). The vertex-edge perfect Roman domination number of G (denoted by & gamma;pveR(G)) is the minimum weight of a ve-PRDF on G. In this paper, we first show that vertex-edge perfect Roman dominating is NP-complete for bipartite graphs. Also, for a tree T, we give upper and lower bounds for & gamma;pveR(T) in terms of the order n, l leaves and s support vertices. Lastly, we determine & gamma;pveR(G) for Petersen, cycle and Flower snark graphs.
引用
收藏
页码:21472 / 21483
页数:12
相关论文
共 50 条
  • [1] VERTEX-EDGE ROMAN DOMINATION
    Kumar, H. Naresh
    Venkatakrishnan, Y. B.
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (05): : 685 - 698
  • [2] Bounds on the vertex-edge domination number of a tree
    Krishnakumari, Balakrishna
    Venkatakrishnan, Yanamandram B.
    Krzywkowski, Marcin
    [J]. COMPTES RENDUS MATHEMATIQUE, 2014, 352 (05) : 363 - 366
  • [3] Results on vertex-edge and independent vertex-edge domination
    Subhabrata Paul
    Keshav Ranjan
    [J]. Journal of Combinatorial Optimization, 2022, 44 : 303 - 330
  • [4] Vertex-edge Roman domination in graphs: Complexity and algorithms
    Kumar, Manjay
    Reddy, P. Venkata Subba
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, : 23 - 37
  • [5] Vertex-Edge Domination
    Lewis, Jason
    Hedetniemi, Stephen T.
    Haynes, Teresa W.
    Fricke, Gerd H.
    [J]. UTILITAS MATHEMATICA, 2010, 81 : 193 - 213
  • [6] Results on vertex-edge and independent vertex-edge domination
    Paul, Subhabrata
    Ranjan, Keshav
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (01) : 303 - 330
  • [7] Vertex-edge domination in graphs
    Boutrig, Razika
    Chellali, Mustapha
    Haynes, Teresa W.
    Hedetniemi, Stephen T.
    [J]. AEQUATIONES MATHEMATICAE, 2016, 90 (02) : 355 - 366
  • [8] Vertex-edge domination in graphs
    Paweł Żyliński
    [J]. Aequationes mathematicae, 2019, 93 : 735 - 742
  • [9] Vertex-edge domination in graphs
    Razika Boutrig
    Mustapha Chellali
    Teresa W. Haynes
    Stephen T. Hedetniemi
    [J]. Aequationes mathematicae, 2016, 90 : 355 - 366
  • [10] Total vertex-edge domination
    Boutrig, Razika
    Chellali, Mustapha
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (09) : 1820 - 1828