Bounds on the vertex-edge domination number of a tree

被引:37
|
作者
Krishnakumari, Balakrishna [1 ]
Venkatakrishnan, Yanamandram B. [1 ]
Krzywkowski, Marcin [2 ,3 ]
机构
[1] SASTRA Univ, Dept Math, Tanjore, Tamil Nadu, India
[2] Univ Johannesburg, Dept Math, Johannesburg, South Africa
[3] Gdansk Univ Technol, Fac Elect Telecommun & Informat, Gdansk, Poland
关键词
D O I
10.1016/j.crma.2014.03.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A vertex-edge dominating set of a graph G is a set D of vertices of G such that every edge of G is incident with a vertex of D or a vertex adjacent to a vertex of D. The vertex-edge domination number of a graph G, denoted by gamma(ve)(T), is the minimum cardinality of a vertex-edge dominating set of G. We prove that for every tree T of order n >= 3 with l leaves and s support vertices, we have (n - l - s + 3)/4 <= gamma(ve)(T) <= n/3, and we characterize the trees attaining each of the bounds. (C) 2014 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:363 / 366
页数:4
相关论文
共 50 条
  • [1] A lower bound on the total vertex-edge domination number of a tree
    Senthilkumar, B.
    Kumar, H. Naresh
    Venkatakrishnan, Y. B.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (01)
  • [2] A NEW LOWER BOUND ON TOTAL VERTEX-EDGE DOMINATION NUMBER OF A TREE
    Senthilkumar, B.
    Kumar, H. Naresh
    Venkatakrishnan, Y. B.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 : 492 - 497
  • [3] Results on vertex-edge and independent vertex-edge domination
    Subhabrata Paul
    Keshav Ranjan
    Journal of Combinatorial Optimization, 2022, 44 : 303 - 330
  • [4] Vertex-edge perfect Roman domination number
    Al Subaiei, Bana
    AlMulhim, Ahlam
    Akwu, Abolape Deborah
    AIMS MATHEMATICS, 2023, 8 (09): : 21472 - 21483
  • [5] Vertex-Edge Domination
    Lewis, Jason
    Hedetniemi, Stephen T.
    Haynes, Teresa W.
    Fricke, Gerd H.
    UTILITAS MATHEMATICA, 2010, 81 : 193 - 213
  • [6] Results on vertex-edge and independent vertex-edge domination
    Paul, Subhabrata
    Ranjan, Keshav
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (01) : 303 - 330
  • [7] Bounds on the double edge-vertex domination number of a tree
    Venkatakrishnan, Y. B.
    Kumar, H. Naresh
    Krishnakumari, B.
    ARS COMBINATORIA, 2019, 146 : 29 - 36
  • [8] Vertex-edge domination in graphs
    Boutrig, Razika
    Chellali, Mustapha
    Haynes, Teresa W.
    Hedetniemi, Stephen T.
    AEQUATIONES MATHEMATICAE, 2016, 90 (02) : 355 - 366
  • [9] Vertex-edge domination in graphs
    Paweł Żyliński
    Aequationes mathematicae, 2019, 93 : 735 - 742
  • [10] VERTEX-EDGE ROMAN DOMINATION
    Kumar, H. Naresh
    Venkatakrishnan, Y. B.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (05): : 685 - 698