Vertex-edge domination in graphs

被引:37
|
作者
Boutrig, Razika [1 ,2 ]
Chellali, Mustapha [2 ]
Haynes, Teresa W. [3 ,4 ]
Hedetniemi, Stephen T. [5 ]
机构
[1] Univ Boumerdes, Fac Econ Sci & Management, Boumerdas, Algeria
[2] Univ Blida, Dept Math, LAMDA RO Lab, BP 270, Blida, Algeria
[3] E Tennessee State Univ, Dept Math, Johnson City, TN 37614 USA
[4] Univ Johannesburg, Dept Math, Auckland Pk, South Africa
[5] Clemson Univ, Sch Comp, Clemson, SC 29634 USA
关键词
Vertex-edge domination; domination; tree;
D O I
10.1007/s00010-015-0354-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study graph parameters related to vertex-edge domination, where a vertex dominates the edges incident to it as well as the edges adjacent to these incident edges. First, we present new relationships relating the ve-domination to some other domination parameters, answering in the affirmative four open questions posed in the 2007 PhD thesis by Lewis. Then we provide an upper bound for the independent ve-domination number in terms of the ve-domination number for every nontrivial connected K (1,k) -free graph, with k a parts per thousand yen 3, and we show that the independent ve-domination number is bounded above by the domination number for every nontrivial tree. Finally, we establish an upper bound on the ve-domination number for connected C (5)-free graphs, improving a recent bound given for trees.
引用
收藏
页码:355 / 366
页数:12
相关论文
共 50 条
  • [31] On a Vertex-Edge Marking Game on Graphs
    Boštjan Brešar
    Nicolas Gastineau
    Tanja Gologranc
    Olivier Togni
    [J]. Annals of Combinatorics, 2021, 25 : 179 - 194
  • [32] On a Vertex-Edge Marking Game on Graphs
    Bresar, Bostjan
    Gastineau, Nicolas
    Gologranc, Tanja
    Togni, Olivier
    [J]. ANNALS OF COMBINATORICS, 2021, 25 (01) : 179 - 194
  • [33] Global vertex-edge domination chain and its characterization
    Chitra, S.
    Sattanathan, R.
    [J]. JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2012, 15 (4-5): : 259 - 268
  • [34] ON THE VERTEX-EDGE WIENER INDICES OF THORN GRAPHS
    Azari, Mahdieh
    [J]. MATEMATICKI VESNIK, 2019, 71 (03): : 263 - 276
  • [35] A Note on Vertex-Edge Wiener Indices of Graphs
    Azari, Mahdieh
    [J]. IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2016, 7 (01): : 11 - 17
  • [36] A lower bound on the total vertex-edge domination number of a tree
    Senthilkumar, B.
    Kumar, H. Naresh
    Venkatakrishnan, Y. B.
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (01)
  • [37] Algorithmic study on liar’s vertex-edge domination problem
    Bhattacharya, Debojyoti
    Paul, Subhabrata
    [J]. Journal of Combinatorial Optimization, 2024, 48 (03)
  • [38] Irregularity Measures of Subdivision Vertex-Edge Join of Graphs
    Zheng, Jialin
    Akhter, Shehnaz
    Iqbal, Zahid
    Shafiq, Muhammad Kashif
    Aslam, Adnan
    Ishaq, Muhammad
    Aamir, Muhammad
    [J]. JOURNAL OF CHEMISTRY, 2021, 2021
  • [39] Graphs with unique minimum vertex-edge dominating sets
    Senthilkumar, B.
    Chellali, M.
    Naresh Kumar, H.
    Venkatakrishnan, Yanamandram B.
    [J]. RAIRO-OPERATIONS RESEARCH, 2023, 57 (04) : 1785 - 1795
  • [40] Spectra of Subdivision Vertex-Edge Join of Three Graphs
    Wen, Fei
    Zhang, You
    Li, Muchun
    [J]. MATHEMATICS, 2019, 7 (02)