Vertex-edge domination in graphs

被引:40
|
作者
Boutrig, Razika [1 ,2 ]
Chellali, Mustapha [2 ]
Haynes, Teresa W. [3 ,4 ]
Hedetniemi, Stephen T. [5 ]
机构
[1] Univ Boumerdes, Fac Econ Sci & Management, Boumerdas, Algeria
[2] Univ Blida, Dept Math, LAMDA RO Lab, BP 270, Blida, Algeria
[3] E Tennessee State Univ, Dept Math, Johnson City, TN 37614 USA
[4] Univ Johannesburg, Dept Math, Auckland Pk, South Africa
[5] Clemson Univ, Sch Comp, Clemson, SC 29634 USA
关键词
Vertex-edge domination; domination; tree;
D O I
10.1007/s00010-015-0354-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study graph parameters related to vertex-edge domination, where a vertex dominates the edges incident to it as well as the edges adjacent to these incident edges. First, we present new relationships relating the ve-domination to some other domination parameters, answering in the affirmative four open questions posed in the 2007 PhD thesis by Lewis. Then we provide an upper bound for the independent ve-domination number in terms of the ve-domination number for every nontrivial connected K (1,k) -free graph, with k a parts per thousand yen 3, and we show that the independent ve-domination number is bounded above by the domination number for every nontrivial tree. Finally, we establish an upper bound on the ve-domination number for connected C (5)-free graphs, improving a recent bound given for trees.
引用
收藏
页码:355 / 366
页数:12
相关论文
共 50 条
  • [21] On Two Open Problems on Double Vertex-Edge Domination in Graphs
    Miao, Fang
    Fan, Wenjie
    Chellali, Mustapha
    Khoeilar, Rana
    Sheikholeslami, Seyed Mahmoud
    Soroudi, Marzieh
    MATHEMATICS, 2019, 7 (11)
  • [22] ON TOTAL VERTEX-EDGE DOMINATION
    Sahin, B.
    Sahin, A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (01): : 128 - 133
  • [23] On Vertex, Edge, and Vertex-Edge Random Graphs
    Beer, Elizabeth
    Fill, James Allen
    Janson, Svante
    Scheinerman, Edward R.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [24] DOUBLE VERTEX-EDGE DOMINATION IN TREES
    Chen, Xue-Gang
    Sohn, Moo Young
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (01) : 167 - 177
  • [25] TOTAL VERTEX-EDGE DOMINATION IN TREES
    Ahangar, H. Abdollahzadeh
    Chellali, M.
    Sheikholeslami, S. M.
    Soroudi, M.
    Volkmann, L.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2021, 90 (02): : 127 - 143
  • [26] DOMINATING VERTEX COVERS: THE VERTEX-EDGE DOMINATION PROBLEM
    Klostermeyer, William F.
    Messinger, Margaret Ellen
    Yeo, Anders
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (01) : 123 - 132
  • [27] Bounds on the vertex-edge domination number of a tree
    Krishnakumari, Balakrishna
    Venkatakrishnan, Yanamandram B.
    Krzywkowski, Marcin
    COMPTES RENDUS MATHEMATIQUE, 2014, 352 (05) : 363 - 366
  • [28] Total outer connected vertex-edge domination
    Senthilkumar, B.
    Kumar, H. Naresh
    Venkatakrishnan, Y. B.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (01)
  • [29] Linear time algorithm for the vertex-edge domination problem in convex bipartite graphs
    Buyukcolak, Yasemin
    DISCRETE OPTIMIZATION, 2025, 55
  • [30] ON VERTEX-EDGE AND EDGE-VERTEX CONNECTIVITY INDICES OF GRAPHS
    Pawar, Shiladhar
    Naji, Ahmed mohsen
    Soner, Nandappa d.
    Ashrafi, Ali reza
    Ghalavand, Ali
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2024, 48 (02): : 225 - 239