Identification of ductile fracture model parameters for three ASTM structural steels using particle swarm optimization

被引:1
|
作者
Zhu, Ya-zhi [1 ]
Huang, Shi-ping [2 ,3 ]
Hong, Hao [4 ]
机构
[1] Tongji Univ, Dept Struct Engn, Shanghai 200092, Peoples R China
[2] South China Univ Technol, Sch Civil Engn & Transportat, Guangzhou 510640, Peoples R China
[3] Chin Singapore Int Joint Res Inst, Guangzhou 510700, Peoples R China
[4] Shanghai Municipal Engn Design Inst Grp Co Ltd, Shanghai 200092, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Parameter calibration; Void growth model (VGM); Gurson-Tvergaard-Needleman (GTN) model; A36; steel; A572; Gr; 50; A992; Particle swarm optimization (PSO); RESPONSE-SURFACE METHODOLOGY; SMALL-PUNCH-TEST; MODIFIED CRITICAL STRAIN; HIGH-STRENGTH STEEL; GTN DAMAGE MODEL; FAILURE ANALYSIS; VOID GROWTH; CYCLIC ELASTOPLASTICITY; NUMERICAL-SIMULATION; PREDICTION;
D O I
10.1631/jzus.A2100369
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Accurate prediction of ductile fracture requires determining the material properties, including the parameters of the constitutive and ductile fracture model, which represent the true material response. Conventional calibration of material parameters often relies on a trial-and-error approach, in which the parameters are manually adjusted until the corresponding finite element model results in a response matching the experimental global response. The parameter estimates are often subjective. To address this issue, in this paper we treat the identification of material parameters as an optimization problem and introduce the particle swarm optimization (PSO) algorithm as the optimization approach. We provide material parameters of two uncoupled ductile fracture models-the Rice and Tracey void growth model (RT-VGM) and the micro-mechanical void growth model (MM-VGM), and a coupled model-the Gurson-Tvergaard-Needleman (GTN) model for ASTM A36, A572 Gr. 50, and A992 structural steels using an automated PSO method. By minimizing the difference between the experimental results and finite element simulations of the load-displacement curves for a set of tests of circumferentially notched tensile (CNT) bars, the calibration procedure automatically determines the parameters of the strain hardening law as well as the uncoupled models and the coupled GTN constitutive model. Validation studies show accurate prediction of the load-displacement response and ductile fracture initiation in V-notch specimens, and confirm the PSO algorithm as an effective and robust algorithm for seeking ductile fracture model parameters. PSO has excellent potential for identifying other fracture models (e.g., shear modified GTN) with many parameters that can give rise to more accurate predictions of ductile fracture. Limitations of the PSO algorithm and the current calibrated ductile fracture models are also discussed in this paper.
引用
下载
收藏
页码:421 / 442
页数:22
相关论文
共 50 条
  • [21] Turning Parameters Optimization using Particle Swarm Optimization
    Marko, Hrelja
    Simon, Klancnik
    Tomaz, Irgolic
    Matej, Paulic
    Joze, Balic
    Miran, Brezocnik
    24TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION, 2013, 2014, 69 : 670 - 677
  • [22] Study of Parameters Estimation of The Three-Compartment Pharmacokinetic Model using Particle Swarm Optimization Algorithm
    Kartono, A.
    Anggraini, D.
    Wahyudi, S. T.
    Setiawan, A. A.
    Irmansyah
    SEMINAR NASIONAL FISIKA (SNF) UNESA 2020, 2021, 1805
  • [23] Identification of unknown parameters of a single diode photovoltaic model using particle swarm optimization with binary constraints
    Bana, Sangram
    Saini, R. P.
    RENEWABLE ENERGY, 2017, 101 : 1299 - 1310
  • [24] A tool for automatic determination of model parameters using particle swarm optimization
    Nzale, Willy
    Ashourian, Hossein
    Mahseredjian, Jean
    Gras, Henry
    ELECTRIC POWER SYSTEMS RESEARCH, 2023, 219
  • [25] Model Parameters Selection for SVM Classification using Particle Swarm Optimization
    Hric, Martin
    Chmulik, Michal
    Jarina, Roman
    PROCEEDINGS OF THE 21ST INTERNATIONAL CONFERENCE - RADIOELEKTRONIKA 2011, 2011, : 387 - 390
  • [26] Estimation of Photovoltaic Cells Model Parameters using Particle Swarm Optimization
    Khanna, Vandana
    Das, B. K.
    Bisht, Dinesh
    Vandana
    Singh, P. K.
    PHYSICS OF SEMICONDUCTOR DEVICES, 2014, : 391 - 394
  • [27] Particle Swarm Optimization for Photovoltaic Model Identification
    Nunes, Hugo
    Pombo, Jose
    Fermeiro, Joao
    Mariano, Silvio
    Calado, Maria do Rosario
    2017 INTERNATIONAL YOUNG ENGINEERS FORUM (YEF-ECE), 2017, : 53 - 58
  • [28] Soil-structure interaction: Parameters identification using particle swarm optimization
    Fontan, M.
    Ndiaye, A.
    Breysse, D.
    Bos, F.
    Fernandez, C.
    COMPUTERS & STRUCTURES, 2011, 89 (17-18) : 1602 - 1614
  • [29] Identification of multiple alternative solutions in structural model updating using multiple subswarm particle swarm optimization
    Qin, Shiqiang
    Zhang, Yazhou
    Cao, Hongyou
    Kang, Juntao
    ENGINEERING OPTIMIZATION, 2023, 55 (02) : 271 - 290
  • [30] Identification of Wiener model using step signals and particle swarm optimization
    Tang, Yinggan
    Qiao, Leijie
    Guan, Xinping
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (04) : 3398 - 3404