Turning Parameters Optimization using Particle Swarm Optimization

被引:28
|
作者
Marko, Hrelja [1 ]
Simon, Klancnik [1 ]
Tomaz, Irgolic [1 ]
Matej, Paulic [1 ]
Joze, Balic [1 ]
Miran, Brezocnik [1 ]
机构
[1] Univ Maribor, Fac Mech Engn, Maribor 2000, Slovenia
关键词
Turning; CAD/CAM; CNC; Manufacturing; Machining; Artificial intelligence; Particle swarm optimization; Regression analysis; CUTTING PARAMETERS; TOOL LIFE; SELECTION;
D O I
10.1016/j.proeng.2014.03.041
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Manufacturing technologies are currently defined as on basics of adoptability, autonomous production, and level of automatization. As we modernize the manufacturing lines, subsequently we are required to update and integrate most modern technologies in order to keep the business competitive. In such way, we can assure cheaper products, shorter manufacturing times, lowering of the production costs. Due to the dynamic processes and increase of the machining parameters optimizing the information which is essential for production got significantly harder. For solving such problems, we have to turn our choice onto the intelligent methods, such as Particle swarm optimization or similar type of intelligent optimization. In this paper we present a proposal, how to successfully gain optimal cutting parameters - cutting speed, feedrate and cutting depth for certain requirements such as cutting force, surface finish - roughness and cutting tool life. (C) 2014 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:670 / 677
页数:8
相关论文
共 50 条
  • [1] Cutting parameters optimization by using particle swarm optimization (PSO)
    Li, J. G.
    Yao, Y. X.
    Gao, D.
    Liu, C. Q.
    Yuan, Z. J.
    [J]. E-ENGINEERING & DIGITAL ENTERPRISE TECHNOLOGY, 2008, 10-12 : 879 - +
  • [2] Parameters Optimization of Deep Learning Models using Particle Swarm Optimization
    Qolomany, Basheer
    Maabreh, Majdi
    Al-Fuqaha, Ala
    Gupta, Ajay
    Benhaddou, Driss
    [J]. 2017 13TH INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING CONFERENCE (IWCMC), 2017, : 1285 - 1290
  • [3] Optimization of Wind Direction Distribution Parameters Using Particle Swarm Optimization
    Heckenbergerova, Jana
    Musilek, Petr
    Kroemer, Pavel
    [J]. AFRO-EUROPEAN CONFERENCE FOR INDUSTRIAL ADVANCEMENT, AECIA 2014, 2015, 334 : 15 - 26
  • [4] Multiobjective Optimization of Grinding Process Parameters Using Particle Swarm Optimization Algorithm
    Pawar, P. J.
    Rao, R. V.
    Davim, J. P.
    [J]. MATERIALS AND MANUFACTURING PROCESSES, 2010, 25 (06) : 424 - 431
  • [5] Optimization of multi-pass turning using particle swarm intelligence
    Srinivas, J.
    Giri, R.
    Yang, Seung-Han
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2009, 40 (1-2): : 56 - 66
  • [6] Optimization of multi-pass turning using particle swarm intelligence
    J. Srinivas
    R. Giri
    Seung-Han Yang
    [J]. The International Journal of Advanced Manufacturing Technology, 2009, 40 : 56 - 66
  • [7] Machining Parameters Optimization using Hybrid Firefly Algorithm and Particle Swarm Optimization
    Johari, Nur Farahlina
    Zain, Azlan Mohd
    Mustaffa, Noorfa Haszlinna
    Udin, Amirmudin
    [J]. 6TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND COMPUTATIONAL MATHEMATICS (ICCSCM 2017), 2017, 892
  • [8] On the Stability and the Parameters of Particle Swarm Optimization
    Yasuda, Keiichiro
    Iwasaki, Nobuhiro
    Ueno, Genki
    [J]. ANT COLONY OPTIMIZATION AND SWARM INTELLIGENCE, PROCEEDINGS, 2008, 5217 : 407 - 408
  • [9] Particle swarm optimization with diverse parameters
    Takei, Mari
    Yasuda, Keiichiro
    Ishigame, Atsushi
    [J]. IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2008, 3 (04) : 449 - 451
  • [10] Particle swarm optimization with adaptive parameters
    Yang, Dongyong
    Chen, Jinyin
    Matsumoto, Naofumi
    [J]. SNPD 2007: EIGHTH ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING, AND PARALLEL/DISTRIBUTED COMPUTING, VOL 1, PROCEEDINGS, 2007, : 616 - +