A tool for automatic determination of model parameters using particle swarm optimization

被引:2
|
作者
Nzale, Willy [1 ]
Ashourian, Hossein [1 ]
Mahseredjian, Jean [2 ]
Gras, Henry [1 ]
机构
[1] PGSTech, Montreal, PQ H2K 1C3, Canada
[2] Polytech Montreal, Montreal, PQ H3T 1J4, Canada
关键词
Digital-twin; Electromagnetic transients; EMTP; Particle swarm optimization; Renewables; This work was supported by PGSTech company in Montreal; Canada; DESIGN;
D O I
10.1016/j.epsr.2023.109258
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a tool developed in EMTP to automatically determine model parameters for matching existing field measurements. The tool uses the particle swarm optimization (PSO) algorithm to calibrate or update existing models. To enhance the performance of the tool, a technique used to improve PSO efficiency is also proposed. Two test cases are presented. The first case aims to determine the parameters of the reactive power control loop in a PV park controller model. The second case finds the unknown parameters in an exciter model of a synchronous machine connected to a grid.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Determination of Blasting Vibration Parameters Using Particle Swarm Optimization
    Li, Linna
    Zhong, Dongwang
    Zhang, Chao
    [J]. 2013 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2013, : 326 - 329
  • [2] Calibration of Soil Model Parameters Using Particle Swarm Optimization
    Yazdi, J. Sadoghi
    Kalantary, F.
    Yazdi, H. Sadoghi
    [J]. INTERNATIONAL JOURNAL OF GEOMECHANICS, 2012, 12 (03) : 229 - 238
  • [3] Determination of Ductile Damage Parameters Using Hybrid Particle Swarm Optimization
    Zhong, J.
    Xu, T.
    Guan, K.
    Zou, B.
    [J]. EXPERIMENTAL MECHANICS, 2016, 56 (06) : 945 - 955
  • [4] Determination of Ductile Damage Parameters Using Hybrid Particle Swarm Optimization
    J. Zhong
    T. Xu
    K. Guan
    B. Zou
    [J]. Experimental Mechanics, 2016, 56 : 945 - 955
  • [5] Automatic mining of model predictive control using particle swarm optimization
    Suzuki, Ryohei
    Kawai, Fukiko
    Ito, Hideyuki
    Nakazawa, Chikashi
    Fukuyama, Yoshikazu
    Aiyoshi, Eitaro
    [J]. 2007 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2007, : 221 - +
  • [6] Turning Parameters Optimization using Particle Swarm Optimization
    Marko, Hrelja
    Simon, Klancnik
    Tomaz, Irgolic
    Matej, Paulic
    Joze, Balic
    Miran, Brezocnik
    [J]. 24TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION, 2013, 2014, 69 : 670 - 677
  • [7] Model Parameters Selection for SVM Classification using Particle Swarm Optimization
    Hric, Martin
    Chmulik, Michal
    Jarina, Roman
    [J]. PROCEEDINGS OF THE 21ST INTERNATIONAL CONFERENCE - RADIOELEKTRONIKA 2011, 2011, : 387 - 390
  • [8] Estimation of Photovoltaic Cells Model Parameters using Particle Swarm Optimization
    Khanna, Vandana
    Das, B. K.
    Bisht, Dinesh
    Vandana
    Singh, P. K.
    [J]. PHYSICS OF SEMICONDUCTOR DEVICES, 2014, : 391 - 394
  • [9] Optimization of Greenhouse Climate Model Parameters Using Particle Swarm Optimization and Genetic Algorithms
    Hasni, Abdelhafid
    Taibi, Rachid
    Draoui, Belkacem
    Boulard, Thierry
    [J]. IMPACT OF INTEGRATED CLEAN ENERGY ON THE FUTURE OF THE MEDITERRANEAN ENVIRONMENT, 2011, 6 : 371 - 380
  • [10] Optimization of PEMFC model parameters with a modified particle swarm optimization
    Askarzadeh, Alireza
    Rezazadeh, Alireza
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2011, 35 (14) : 1258 - 1265