Determination of Ductile Damage Parameters Using Hybrid Particle Swarm Optimization

被引:24
|
作者
Zhong, J. [1 ]
Xu, T. [2 ]
Guan, K. [1 ]
Zou, B. [1 ]
机构
[1] East China Univ Sci & Technol, Sch Mech & Power Engn, Shanghai 200237, Peoples R China
[2] China Special Equipment Inspect & Res Inst, Beijing 100013, Peoples R China
关键词
Damage parameters; Hybrid particle swarm optimization; Finite element method; Notched tensile specimens; SMALL PUNCH TEST; ARTIFICIAL NEURAL-NETWORKS; VOID NUCLEATION; GURSON MODEL; FRACTURE; IDENTIFICATION; GROWTH; DEFORMATION; CRITERION;
D O I
10.1007/s11340-016-0141-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Damage models are widely used to describe the ductile damage and fracture of metals. This paper proposes a new approach to determine the damage parameters of the Gurson-Tveergard-Needleman model, which uses a load-displacement curve coupled with finite element method. The load-displacement curve was obtained from a tensile test of a smooth tensile specimen and contained information about the damage and fracture behavior of the tested material. The principle of damage parameters identification is to minimize the deviation between experimental and simulated load-displacement curves by a hybrid particle swarm optimization. As a combination of particle swarm optimization and simulated annealing, the hybrid particle swarm optimization is an economical and effective algorithm to identify damage parameters. The identified damage parameters are also verified by testing and simulating deformation shapes of the smooth tensile specimen which is used for parameters determination. Tests and simulations of notched tensile specimens were carried out to discuss the transformability of the identified damage parameters. It is observed that the value of critical void volume fraction of the Gurson-Tveergard-Needleman model decreases with the increase of stress triaxiality.
引用
收藏
页码:945 / 955
页数:11
相关论文
共 50 条
  • [1] Determination of Ductile Damage Parameters Using Hybrid Particle Swarm Optimization
    J. Zhong
    T. Xu
    K. Guan
    B. Zou
    [J]. Experimental Mechanics, 2016, 56 : 945 - 955
  • [2] Determination of Blasting Vibration Parameters Using Particle Swarm Optimization
    Li, Linna
    Zhong, Dongwang
    Zhang, Chao
    [J]. 2013 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2013, : 326 - 329
  • [3] Machining Parameters Optimization using Hybrid Firefly Algorithm and Particle Swarm Optimization
    Johari, Nur Farahlina
    Zain, Azlan Mohd
    Mustaffa, Noorfa Haszlinna
    Udin, Amirmudin
    [J]. 6TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND COMPUTATIONAL MATHEMATICS (ICCSCM 2017), 2017, 892
  • [4] Structural Damage Detection Using Modal Parameters and Particle Swarm Optimization
    Gokdag, Hakan
    Yildiz, Ali R.
    [J]. MATERIALS TESTING, 2012, 54 (06) : 416 - 420
  • [5] A tool for automatic determination of model parameters using particle swarm optimization
    Nzale, Willy
    Ashourian, Hossein
    Mahseredjian, Jean
    Gras, Henry
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2023, 219
  • [6] Turning Parameters Optimization using Particle Swarm Optimization
    Marko, Hrelja
    Simon, Klancnik
    Tomaz, Irgolic
    Matej, Paulic
    Joze, Balic
    Miran, Brezocnik
    [J]. 24TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION, 2013, 2014, 69 : 670 - 677
  • [7] Locating the Parameters of RBF Networks Using a Hybrid Particle Swarm Optimization Method
    Tsoulos, Ioannis G.
    Charilogis, Vasileios
    [J]. ALGORITHMS, 2023, 16 (02)
  • [8] Identification of ductile fracture model parameters for three ASTM structural steels using particle swarm optimization
    Zhu, Ya-zhi
    Huang, Shi-ping
    Hong, Hao
    [J]. JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2022, 23 (06): : 421 - 442
  • [9] Cutting parameters optimization by using particle swarm optimization (PSO)
    Li, J. G.
    Yao, Y. X.
    Gao, D.
    Liu, C. Q.
    Yuan, Z. J.
    [J]. E-ENGINEERING & DIGITAL ENTERPRISE TECHNOLOGY, 2008, 10-12 : 879 - +
  • [10] Parameters optimization of dual clutch transmission based on hybrid particle swarm optimization
    Du, Chang-Qing
    Cao, Xi-Liang
    He, Biao
    Ren, Wei-Qun
    [J]. Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2020, 50 (05): : 1556 - 1564