Determination of Ductile Damage Parameters Using Hybrid Particle Swarm Optimization

被引:24
|
作者
Zhong, J. [1 ]
Xu, T. [2 ]
Guan, K. [1 ]
Zou, B. [1 ]
机构
[1] East China Univ Sci & Technol, Sch Mech & Power Engn, Shanghai 200237, Peoples R China
[2] China Special Equipment Inspect & Res Inst, Beijing 100013, Peoples R China
关键词
Damage parameters; Hybrid particle swarm optimization; Finite element method; Notched tensile specimens; SMALL PUNCH TEST; ARTIFICIAL NEURAL-NETWORKS; VOID NUCLEATION; GURSON MODEL; FRACTURE; IDENTIFICATION; GROWTH; DEFORMATION; CRITERION;
D O I
10.1007/s11340-016-0141-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Damage models are widely used to describe the ductile damage and fracture of metals. This paper proposes a new approach to determine the damage parameters of the Gurson-Tveergard-Needleman model, which uses a load-displacement curve coupled with finite element method. The load-displacement curve was obtained from a tensile test of a smooth tensile specimen and contained information about the damage and fracture behavior of the tested material. The principle of damage parameters identification is to minimize the deviation between experimental and simulated load-displacement curves by a hybrid particle swarm optimization. As a combination of particle swarm optimization and simulated annealing, the hybrid particle swarm optimization is an economical and effective algorithm to identify damage parameters. The identified damage parameters are also verified by testing and simulating deformation shapes of the smooth tensile specimen which is used for parameters determination. Tests and simulations of notched tensile specimens were carried out to discuss the transformability of the identified damage parameters. It is observed that the value of critical void volume fraction of the Gurson-Tveergard-Needleman model decreases with the increase of stress triaxiality.
引用
收藏
页码:945 / 955
页数:11
相关论文
共 50 条
  • [41] On a hybrid particle swarm optimization algorithm
    Singh, Sharandeep
    Singh, Narinder
    Singh, S. B.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2016, 3 (12): : 96 - 105
  • [42] Particle swarm optimization with diverse parameters
    Takei, Mari
    Yasuda, Keiichiro
    Ishigame, Atsushi
    [J]. IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2008, 3 (04) : 449 - 451
  • [43] A Hybrid Particle Swarm Optimization Algorithm
    Qi Changxing
    Bi Yiming
    Han Huihua
    Li Yong
    [J]. PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2017, : 2187 - 2190
  • [44] A hybrid particle swarm optimization method
    Wang, X.
    Gao, X. Z.
    Ovaska, S. J.
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-6, PROCEEDINGS, 2006, : 4151 - +
  • [45] An adaptive Hybrid Particle Swarm Optimization
    Liu, Yong
    Liang, Fangfang
    [J]. SECOND INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN, VOL 1, PROCEEDINGS, 2009, : 87 - 90
  • [46] Estimation of Parameters of Triple Diode Photovoltaic Models Using Hybrid Particle Swarm and Grey Wolf Optimization
    Ellithy, Hazem Hassan
    Taha, Adel M.
    Hasanien, Hany M.
    Attia, Mahmoud A.
    El-Shahat, Adel
    Aleem, Shady H. E. Abdel
    [J]. SUSTAINABILITY, 2022, 14 (15)
  • [47] Modeling and prediction of water quality parameters using a hybrid particle swarm optimization–neural fuzzy approach
    B. Aghel
    A. Rezaei
    M. Mohadesi
    [J]. International Journal of Environmental Science and Technology, 2019, 16 : 4823 - 4832
  • [48] Inverse analysis of hydrogeological parameters using hybrid Hooke-Jeeves and particle swarm optimization method
    Jiang, Si-Min
    Zhu, Guo-Rong
    Shi, Xiao-Qing
    Zhou, Nian-Qing
    [J]. Shuikexue Jinzhan/Advances in Water Science, 2010, 21 (05): : 606 - 612
  • [49] Solar cell parameters identification using hybrid Nelder-Mead and modified particle swarm optimization
    Hamid, Nurul Farhana Abdul
    Abd Rahim, Nasrudin
    Selvaraj, Jeyraj
    [J]. JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2016, 8 (01)
  • [50] Energy group structure determination using particle swarm optimization
    Yi, Ce
    Sjoden, Glenn
    [J]. ANNALS OF NUCLEAR ENERGY, 2013, 56 : 53 - 56