Identification of ductile fracture model parameters for three ASTM structural steels using particle swarm optimization

被引:1
|
作者
Zhu, Ya-zhi [1 ]
Huang, Shi-ping [2 ,3 ]
Hong, Hao [4 ]
机构
[1] Tongji Univ, Dept Struct Engn, Shanghai 200092, Peoples R China
[2] South China Univ Technol, Sch Civil Engn & Transportat, Guangzhou 510640, Peoples R China
[3] Chin Singapore Int Joint Res Inst, Guangzhou 510700, Peoples R China
[4] Shanghai Municipal Engn Design Inst Grp Co Ltd, Shanghai 200092, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Parameter calibration; Void growth model (VGM); Gurson-Tvergaard-Needleman (GTN) model; A36; steel; A572; Gr; 50; A992; Particle swarm optimization (PSO); RESPONSE-SURFACE METHODOLOGY; SMALL-PUNCH-TEST; MODIFIED CRITICAL STRAIN; HIGH-STRENGTH STEEL; GTN DAMAGE MODEL; FAILURE ANALYSIS; VOID GROWTH; CYCLIC ELASTOPLASTICITY; NUMERICAL-SIMULATION; PREDICTION;
D O I
10.1631/jzus.A2100369
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Accurate prediction of ductile fracture requires determining the material properties, including the parameters of the constitutive and ductile fracture model, which represent the true material response. Conventional calibration of material parameters often relies on a trial-and-error approach, in which the parameters are manually adjusted until the corresponding finite element model results in a response matching the experimental global response. The parameter estimates are often subjective. To address this issue, in this paper we treat the identification of material parameters as an optimization problem and introduce the particle swarm optimization (PSO) algorithm as the optimization approach. We provide material parameters of two uncoupled ductile fracture models-the Rice and Tracey void growth model (RT-VGM) and the micro-mechanical void growth model (MM-VGM), and a coupled model-the Gurson-Tvergaard-Needleman (GTN) model for ASTM A36, A572 Gr. 50, and A992 structural steels using an automated PSO method. By minimizing the difference between the experimental results and finite element simulations of the load-displacement curves for a set of tests of circumferentially notched tensile (CNT) bars, the calibration procedure automatically determines the parameters of the strain hardening law as well as the uncoupled models and the coupled GTN constitutive model. Validation studies show accurate prediction of the load-displacement response and ductile fracture initiation in V-notch specimens, and confirm the PSO algorithm as an effective and robust algorithm for seeking ductile fracture model parameters. PSO has excellent potential for identifying other fracture models (e.g., shear modified GTN) with many parameters that can give rise to more accurate predictions of ductile fracture. Limitations of the PSO algorithm and the current calibrated ductile fracture models are also discussed in this paper.
引用
收藏
页码:421 / 442
页数:22
相关论文
共 50 条
  • [1] Identification of ductile fracture model parameters for three ASTM structural steels using particle swarm optimization基于粒子群算法的ASTM结构钢延性断裂模型参数识别研究
    Ya-zhi Zhu
    Shi-ping Huang
    Hao Hong
    [J]. Journal of Zhejiang University-SCIENCE A, 2022, 23 : 421 - 442
  • [2] Micromechanics-based identification of a ductile fracture model for three structural steels
    Bergo, Sondre
    Morin, David
    Borvik, Tore
    Hopperstad, Odd Sture
    [J]. ENGINEERING FRACTURE MECHANICS, 2020, 224
  • [3] Gurson model parameters for ductile fracture simulation in ASTM A992 steels
    Kiran, R.
    Khandelwal, K.
    [J]. FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2014, 37 (02) : 171 - 183
  • [4] Determination of Ductile Damage Parameters Using Hybrid Particle Swarm Optimization
    J. Zhong
    T. Xu
    K. Guan
    B. Zou
    [J]. Experimental Mechanics, 2016, 56 : 945 - 955
  • [5] Determination of Ductile Damage Parameters Using Hybrid Particle Swarm Optimization
    Zhong, J.
    Xu, T.
    Guan, K.
    Zou, B.
    [J]. EXPERIMENTAL MECHANICS, 2016, 56 (06) : 945 - 955
  • [6] A micromechanical model for ductile fracture prediction in ASTM A992 steels
    Kiran, Ravi
    Khandelwal, Kapil
    [J]. ENGINEERING FRACTURE MECHANICS, 2013, 102 : 101 - 117
  • [7] Identification of Jiles-Atherton model parameters using particle swarm optimization
    Marion, Romain
    Scorretti, Riccardo
    Siauve, Nicolas
    Raulet, Marie-Ange
    Kraehenbuehl, Laurent
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (06) : 894 - 897
  • [8] Identification of Structural Systems Using Particle Swarm Optimization
    Xue, Songtao
    Tang, Hesheng
    Zhou, Jin
    [J]. JOURNAL OF ASIAN ARCHITECTURE AND BUILDING ENGINEERING, 2009, 8 (02) : 517 - 524
  • [9] Structural Damage Identification using Improved Particle Swarm Optimization
    Guo, Huiyong
    Yuan, Junsheng
    Li, Zhengliang
    [J]. TRENDS IN CIVIL ENGINEERING, PTS 1-4, 2012, 446-449 : 3171 - 3175
  • [10] Evaluation of ductile fracture of structural steels by microvoid model
    Qiu, H
    Mori, H
    Enoki, M
    Kishi, T
    [J]. ISIJ INTERNATIONAL, 1999, 39 (04) : 358 - 364