Identification of ductile fracture model parameters for three ASTM structural steels using particle swarm optimization

被引:1
|
作者
Zhu, Ya-zhi [1 ]
Huang, Shi-ping [2 ,3 ]
Hong, Hao [4 ]
机构
[1] Tongji Univ, Dept Struct Engn, Shanghai 200092, Peoples R China
[2] South China Univ Technol, Sch Civil Engn & Transportat, Guangzhou 510640, Peoples R China
[3] Chin Singapore Int Joint Res Inst, Guangzhou 510700, Peoples R China
[4] Shanghai Municipal Engn Design Inst Grp Co Ltd, Shanghai 200092, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Parameter calibration; Void growth model (VGM); Gurson-Tvergaard-Needleman (GTN) model; A36; steel; A572; Gr; 50; A992; Particle swarm optimization (PSO); RESPONSE-SURFACE METHODOLOGY; SMALL-PUNCH-TEST; MODIFIED CRITICAL STRAIN; HIGH-STRENGTH STEEL; GTN DAMAGE MODEL; FAILURE ANALYSIS; VOID GROWTH; CYCLIC ELASTOPLASTICITY; NUMERICAL-SIMULATION; PREDICTION;
D O I
10.1631/jzus.A2100369
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Accurate prediction of ductile fracture requires determining the material properties, including the parameters of the constitutive and ductile fracture model, which represent the true material response. Conventional calibration of material parameters often relies on a trial-and-error approach, in which the parameters are manually adjusted until the corresponding finite element model results in a response matching the experimental global response. The parameter estimates are often subjective. To address this issue, in this paper we treat the identification of material parameters as an optimization problem and introduce the particle swarm optimization (PSO) algorithm as the optimization approach. We provide material parameters of two uncoupled ductile fracture models-the Rice and Tracey void growth model (RT-VGM) and the micro-mechanical void growth model (MM-VGM), and a coupled model-the Gurson-Tvergaard-Needleman (GTN) model for ASTM A36, A572 Gr. 50, and A992 structural steels using an automated PSO method. By minimizing the difference between the experimental results and finite element simulations of the load-displacement curves for a set of tests of circumferentially notched tensile (CNT) bars, the calibration procedure automatically determines the parameters of the strain hardening law as well as the uncoupled models and the coupled GTN constitutive model. Validation studies show accurate prediction of the load-displacement response and ductile fracture initiation in V-notch specimens, and confirm the PSO algorithm as an effective and robust algorithm for seeking ductile fracture model parameters. PSO has excellent potential for identifying other fracture models (e.g., shear modified GTN) with many parameters that can give rise to more accurate predictions of ductile fracture. Limitations of the PSO algorithm and the current calibrated ductile fracture models are also discussed in this paper.
引用
收藏
页码:421 / 442
页数:22
相关论文
共 50 条
  • [41] Parameters Identification of Robot Manipulator based on Particle Swarm Optimization
    Mizuno, N.
    Nguyen, C. H.
    2017 13TH IEEE INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION (ICCA), 2017, : 307 - 312
  • [42] Estimation of kinetic parameters of an anaerobic digestion model using particle swarm optimization
    Yang, Jixiang
    Lu, Lunhui
    Ouyang, Wenjuan
    Gou, Yao
    Chen, Youpeng
    Ma, Hua
    Guo, Jinsong
    Fang, Fang
    BIOCHEMICAL ENGINEERING JOURNAL, 2017, 120 : 25 - 32
  • [43] Optimal parameters identification for PEMFC using autonomous groups particle swarm optimization algorithm
    Elfar, Medhat Hegazy
    Fawzi, Mahmoud
    Serry, Ahmed S.
    Elsakka, Mohamed
    Elgamal, Mohamed
    Refaat, Ahmed
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 69 : 1113 - 1128
  • [44] TRAINING MATRIX PARAMETERS BY PARTICLE SWARM OPTIMIZATION USING A FUZZY NEURAL NETWORK FOR IDENTIFICATION
    Shafiabady, Niusha
    Teshnehlab, M.
    Shooredeli, M. Aliyari
    ICIAS 2007: INTERNATIONAL CONFERENCE ON INTELLIGENT & ADVANCED SYSTEMS, VOLS 1-3, PROCEEDINGS, 2007, : 188 - +
  • [45] Efficient parameters identification of a modified GTN model of ductile fracture using machine learning
    Chen, Dong
    Li, Yazhi
    Yang, Xuan
    Jiang, Wei
    Guan, Lingxiao
    ENGINEERING FRACTURE MECHANICS, 2021, 245
  • [46] Particle swarm optimization for identification of GMS friction model
    Nilkhamhang, Itthisek
    Sano, Akira
    2006 SICE-ICASE INTERNATIONAL JOINT CONFERENCE, VOLS 1-13, 2006, : 2689 - +
  • [47] Photovoltaic Model Identification Using Particle Swarm Optimization With Inverse Barrier Constraint
    Soon, Jing Jun
    Low, Kay-Soon
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2012, 27 (09) : 3975 - 3983
  • [48] Parameter identification of electrostatic discharge model using particle swarm optimization algorithm
    Wang, Xiao-Dong
    Wang, Ke
    Wang, Jin-Shan
    Zhang, Hao-Ran
    Gaodianya Jishu/High Voltage Engineering, 2010, 36 (02): : 434 - 438
  • [49] Process identification using a new component analysis model and particle swarm optimization
    Fan, Shu-Kai S.
    Lin, Yen
    Fan, Chih-Min
    Wang, Yi-Yi
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2009, 99 (01) : 19 - 29
  • [50] Parameter identification for Wiener model using particle swarm optimization with a case study
    Zhang, Yan
    Li, Shaoyuan
    2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2007, : 1725 - +