Model Parameters Selection for SVM Classification using Particle Swarm Optimization

被引:0
|
作者
Hric, Martin [1 ]
Chmulik, Michal [1 ]
Jarina, Roman [1 ]
机构
[1] Univ Zilina, Dept Telecommun & Multimedia, Univ 1, Zilina 01026, Slovakia
关键词
SVM; model selection; classification; PSO; GA;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Support Vector Machine (SVM) classification requires set of one or more parameters and these parameters have significant influence on classification precision and generalization ability. Searching for suitable model parameters invokes great computational load, which accentuates with increasing size of the dataset and with amount of the parameters being optimized. In this paper we present and compare various SVM parameters selection techniques, namely grid search, Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). Experiments conducting over two datasets show promising results with PSO and GA optimization technique.
引用
收藏
页码:387 / 390
页数:4
相关论文
共 50 条
  • [1] Feature Selection and Parameters Optimization of SVM Using Particle Swarm Optimization for Fault Classification in Power Distribution Systems
    Cho, Ming-Yuan
    Thi Thom Hoang
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2017, 2017
  • [2] Feature Selection for Classification Using Particle Swarm Optimization
    Brezocnik, Lucija
    [J]. 17TH IEEE INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES - IEEE EUROCON 2017 CONFERENCE PROCEEDINGS, 2017, : 966 - 971
  • [3] Optimal SVM Parameters Estimation Using Chaotic Accelerated Particle Swarm Optimization for Genetic Data Classification
    Yassi, Maryam
    Moattar, Mohammad Hossein
    [J]. 2014 INTERNATIONAL CONGRESS ON TECHNOLOGY, COMMUNICATION AND KNOWLEDGE (ICTCK), 2014,
  • [4] LS_SVM Parameters Selection Based on Hybrid Complex Particle Swarm Optimization
    Chen Yongqi
    [J]. 2012 INTERNATIONAL CONFERENCE ON FUTURE ELECTRICAL POWER AND ENERGY SYSTEM, PT A, 2012, 17 : 706 - 710
  • [5] LS_SVM Parameters Selection Based on Hybrid Complex Particle Swarm Optimization
    Chen Yongqi
    [J]. 2011 INTERNATIONAL CONFERENCE ON FUTURE COMPUTERS IN EDUCATION (ICFCE 2011), VOL II, 2011, : 414 - 417
  • [6] PSPSO: A package for parameters selection using particle swarm optimization
    Haidar, Ali
    Field, Matthew
    Sykes, Jonathan
    Carolan, Martin
    Holloway, Lois
    [J]. SOFTWAREX, 2021, 15
  • [7] Big Data Classification Using the SVM Classifiers with the Modified Particle Swarm Optimization and the SVM Ensembles
    Demidova, Liliya
    Nikulchev, Evgeny
    Sokolova, Yulia
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2016, 7 (05) : 294 - 312
  • [8] Model selection based on particle swarm optimization for omics data classification
    Xu, Zhao
    Yang, Junshan
    [J]. 2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 1334 - 1337
  • [9] Cauchy mutation based on objective variable of Gaussian particle swarm optimization for parameters selection of SVM
    Wu, Qi
    Law, Rob
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (06) : 6405 - 6411
  • [10] Biomedical classification application and parameters optimization of mixed kernel SVM based on the information entropy particle swarm optimization
    Li, Mi
    Lu, Xiaofeng
    Wang, Xiaodong
    Lu, Shengfu
    Zhong, Ning
    [J]. COMPUTER ASSISTED SURGERY, 2016, 21 : 133 - 142