Automatic mining of model predictive control using particle swarm optimization

被引:16
|
作者
Suzuki, Ryohei [1 ]
Kawai, Fukiko [2 ]
Ito, Hideyuki [2 ]
Nakazawa, Chikashi [2 ]
Fukuyama, Yoshikazu [2 ]
Aiyoshi, Eitaro [1 ]
机构
[1] Keio Univ, Kohoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan
[2] Fuji Elect Adv Technol Co Ltd, Tokyo 1918502, Japan
关键词
D O I
10.1109/SIS.2007.367941
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an automatic tuning method of model predictive control (MPC) using particle swarm optimization (PSO). Although conventional PID is difficult to treat constraints and future plant dynamics, MPC can treat this issues and practical control can be realized in various industrial problems. One of the challenges in WC is how control parameters can be tuned for various target plants and usage of PSO for automatic tuning is one of the solutions. The numerical results show the effectiveness of the proposed PSO-based automatic tuning method.
引用
收藏
页码:221 / +
页数:2
相关论文
共 50 条
  • [1] Automatic landing control using particle swarm optimization
    Juang, JG
    Lin, BS
    Chin, KC
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS, 2005, : 721 - 726
  • [2] Fast Nonlinear Model Predictive Control on FPGA Using Particle Swarm Optimization
    Xu, Fang
    Chen, Hong
    Gong, Xun
    Mei, Qin
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (01) : 310 - 321
  • [3] Mean arterial pressure control system using model predictive control and particle swarm optimization
    Te-Jen Su
    Shih-Ming Wang
    Hong-Quan Vu
    Jau-Ji Jou
    Cheuk-Kwan Sun
    [J]. Microsystem Technologies, 2018, 24 : 147 - 153
  • [4] Mean arterial pressure control system using model predictive control and particle swarm optimization
    Su, Te-Jen
    Wang, Shih-Ming
    Hong-Quan Vu
    Jou, Jau-Ji
    Sun, Cheuk-Kwan
    [J]. MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2018, 24 (01): : 147 - 153
  • [5] Constrained Fuzzy Predictive Control Using Particle Swarm Optimization
    Sahed, Oussama Ait
    Kara, Kamel
    Hadjili, Mohamed Laid
    [J]. APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING, 2015, 2015
  • [6] Particle Swarm Optimization - Model Predictive Control for Microgrid Energy Management
    Van Quyen Ngo
    Al-Haddad, Kamal
    Kim Khoa Nguyen
    [J]. 2020 ZOOMING INNOVATION IN CONSUMER TECHNOLOGIES CONFERENCE (ZINC), 2020, : 264 - 269
  • [7] A tool for automatic determination of model parameters using particle swarm optimization
    Nzale, Willy
    Ashourian, Hossein
    Mahseredjian, Jean
    Gras, Henry
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2023, 219
  • [8] Automatic weight determination in nonlinear model predictive control of wind turbines using swarm optimization technique
    Tofighi, Elham
    Mandizadeh, Amin
    [J]. SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2016), 2016, 753
  • [9] Nonlinear model predictive control with relevance vector regression and particle swarm optimization
    M.GERMIN NISHA
    G.N.PILLAI
    [J]. Control Theory and Technology, 2013, 11 (04) : 563 - 569
  • [10] Model Predictive Control based on Real Time Particle Swarm Optimization (IPO)
    Dolatkhah, Somayeh
    Menhaj, Mohamad Bagher
    [J]. MEMS, NANO AND SMART SYSTEMS, PTS 1-6, 2012, 403-408 : 3461 - 3468