Anomaly Detection with a Spatio-Temporal Tracking of the Laser Spot

被引:1
|
作者
Atienza, David [1 ]
Bielza, Concha [1 ]
Diaz, Javier [1 ,2 ]
Larranaga, Pedro [1 ]
机构
[1] Tech Univ Madrid, Dept Artificial Intelligence, Madrid, Spain
[2] IKERGUNE AIE, Elgoibar, Spain
关键词
Kernel density estimation; Anomaly detection; Time-series; Laser surface heating process;
D O I
10.3233/978-1-61499-682-8-137
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Anomaly detection is an important problem with many applications in industry. This paper introduces a new methodology for detecting anomalies in a real laser heating surface process recorded with a high-speed thermal camera (1000 fps, 32x32 pixels). The system is trained with non-anomalous data only (32 videos with 21500 frames). The proposed method is built upon kernel density estimation and is capable of detecting anomalies in time-series data. The classification should be completed in-process, that is, within the cycle time of the workpiece.
引用
收藏
页码:137 / 142
页数:6
相关论文
共 50 条
  • [31] Normal Spatio-Temporal Information Enhance for Unsupervised Video Anomaly Detection
    Jun Wang
    Di Jia
    Ziqing Huang
    Miaohui Zhang
    Xing Ren
    Neural Processing Letters, 2023, 55 : 10727 - 10745
  • [32] Anomaly Detection through Spatio-Temporal Context Modeling in Crowded Scenes
    Lu, Tong
    Wu, Liang
    Ma, Xiaolin
    Shivakumara, Palaiahnakote
    Tan, Chew Lim
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 2203 - 2208
  • [33] HUAD: Hierarchical Urban Anomaly Detection Based on Spatio-Temporal Data
    Kong, Xiangjie
    Gao, Haoran
    Alfarraj, Osama
    Ni, Qichao
    Zheng, Chaofan
    Shen, Guojiang
    IEEE ACCESS, 2020, 8 : 26573 - 26582
  • [34] Video anomaly detection based on spatio-temporal relationships among objects
    Wang, Yang
    Liu, Tianying
    Zhou, Jiaogen
    Guan, Jihong
    NEUROCOMPUTING, 2023, 532 : 141 - 151
  • [35] Effective Crowd Anomaly Detection Through Spatio-temporal Texture Analysis
    Yu Hao
    Zhi-Jie Xu
    Ying Liu
    Jing Wang
    Jiu-Lun Fan
    International Journal of Automation and Computing, 2019, 16 (01) : 27 - 39
  • [36] STenSr: Spatio-temporal tensor streams for anomaly detection and pattern discovery
    Lei Shi
    Aryya Gangopadhyay
    Vandana P. Janeja
    Knowledge and Information Systems, 2015, 43 : 333 - 353
  • [37] STenSr: Spatio-temporal tensor streams for anomaly detection and pattern discovery
    Shi, Lei
    Gangopadhyay, Aryya
    Janeja, Vandana P.
    KNOWLEDGE AND INFORMATION SYSTEMS, 2015, 43 (02) : 333 - 353
  • [38] STemGAN: spatio-temporal generative adversarial network for video anomaly detection
    Rituraj Singh
    Krishanu Saini
    Anikeit Sethi
    Aruna Tiwari
    Sumeet Saurav
    Sanjay Singh
    Applied Intelligence, 2023, 53 : 28133 - 28152
  • [39] Anomaly detection through spatio-temporal context modeling in crowded scenes
    Lu, Tong
    Wu, Liang
    Ma, Xiaolin
    Shivakumara, Palaiahnakote
    Tan, Chew Lim
    Proceedings - International Conference on Pattern Recognition, 2014, : 2203 - 2208
  • [40] STemGAN: spatio-temporal generative adversarial network for video anomaly detection
    Singh, Rituraj
    Saini, Krishanu
    Sethi, Anikeit
    Tiwari, Aruna
    Saurav, Sumeet
    Singh, Sanjay
    APPLIED INTELLIGENCE, 2023, 53 (23) : 28133 - 28152