Anomaly Detection with a Spatio-Temporal Tracking of the Laser Spot

被引:1
|
作者
Atienza, David [1 ]
Bielza, Concha [1 ]
Diaz, Javier [1 ,2 ]
Larranaga, Pedro [1 ]
机构
[1] Tech Univ Madrid, Dept Artificial Intelligence, Madrid, Spain
[2] IKERGUNE AIE, Elgoibar, Spain
关键词
Kernel density estimation; Anomaly detection; Time-series; Laser surface heating process;
D O I
10.3233/978-1-61499-682-8-137
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Anomaly detection is an important problem with many applications in industry. This paper introduces a new methodology for detecting anomalies in a real laser heating surface process recorded with a high-speed thermal camera (1000 fps, 32x32 pixels). The system is trained with non-anomalous data only (32 videos with 21500 frames). The proposed method is built upon kernel density estimation and is capable of detecting anomalies in time-series data. The classification should be completed in-process, that is, within the cycle time of the workpiece.
引用
收藏
页码:137 / 142
页数:6
相关论文
共 50 条
  • [21] Spectrum Anomaly Detection Based on Spatio-Temporal Network Prediction
    Peng, Chuang
    Hu, Weilin
    Wang, Lunwen
    ELECTRONICS, 2022, 11 (11)
  • [22] Anomaly Detection with Spatio-Temporal Context Using Depth Images
    Ma, Xiaolin
    Lu, Tong
    Xu, Feiming
    Su, Feng
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 2590 - 2593
  • [23] Distributed Anomaly Detection Algorithm for Spatio-Temporal Trajectories of Vehicles
    Lu, Liping
    Cheng, Hao
    Xiong, Shengwu
    Duan, Pengfei
    Xiao, Yuan
    2017 15TH IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING WITH APPLICATIONS AND 2017 16TH IEEE INTERNATIONAL CONFERENCE ON UBIQUITOUS COMPUTING AND COMMUNICATIONS (ISPA/IUCC 2017), 2017, : 590 - 598
  • [24] Detecting Regions of Maximal Divergence for Spatio-Temporal Anomaly Detection
    Barz, Bjorn
    Rodner, Erik
    Garcia, Yanira Guanche
    Denzler, Joachim
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (05) : 1088 - 1101
  • [25] Anomaly detection with a moving camera using spatio-temporal codebooks
    Nakahata, Mateus T.
    Thomaz, Lucas A.
    da Silva, Allan F.
    da Silva, Eduardo A. B.
    Netto, Sergio L.
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2018, 29 (03) : 1025 - 1054
  • [26] Spatio-Temporal Motion Features for Laser-based Moving Objects Detection and Tracking
    Shen, Xiaotong
    Kim, Seong-Woo
    Ang, Marcelo H., Jr.
    2014 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2014), 2014, : 4253 - 4259
  • [27] Robust Lane Detection and Tracking with Propagated Spatio-temporal Constraints
    Li, Tingting
    Li, Kunqian
    Tao, Wenbing
    PROCEEDINGS 2017 4TH IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2017, : 202 - 207
  • [28] Adaptive background learning for vehicle detection and spatio-temporal tracking
    Zhang, CC
    Chen, SC
    Shyu, ML
    Peeta, S
    ICICS-PCM 2003, VOLS 1-3, PROCEEDINGS, 2003, : 797 - 801
  • [29] Normal Spatio-Temporal Information Enhance for Unsupervised Video Anomaly Detection
    Wang, Jun
    Jia, Di
    Huang, Ziqing
    Zhang, Miaohui
    Ren, Xing
    NEURAL PROCESSING LETTERS, 2023, 55 (08) : 10727 - 10745
  • [30] Anomaly Detection via Local Coordinate Factorization and Spatio-Temporal Pyramid
    Xiao, Tan
    Zhang, Chao
    Zha, Hongbin
    Wei, Fangyun
    COMPUTER VISION - ACCV 2014, PT V, 2015, 9007 : 66 - 82