Detecting Regions of Maximal Divergence for Spatio-Temporal Anomaly Detection

被引:52
|
作者
Barz, Bjorn [1 ]
Rodner, Erik [2 ]
Garcia, Yanira Guanche [1 ]
Denzler, Joachim [1 ]
机构
[1] Friedrich Schiller Univ Jena, Dept Math & Comp Sci, Comp Vis Grp, D-07737 Jena, Germany
[2] Carl Zeiss, Corp Res & Technol, Oberkochen, Germany
基金
欧盟地平线“2020”;
关键词
Anomaly detection; time series analysis; spatio-temporal data; data mining; unsupervised machine learning;
D O I
10.1109/TPAMI.2018.2823766
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic detection of anomalies in space- and time-varying measurements is an important tool in several fields, e.g., fraud detection, climate analysis, or healthcare monitoring. We present an algorithm for detecting anomalous regions in multivariate spatio-temporal time-series, which allows for spotting the interesting parts in large amounts of data, including video and text data. In opposition to existing techniques for detecting isolated anomalous data points, we propose the "Maximally Divergent Intervals" (MDI) framework for unsupervised detection of coherent spatial regions and time intervals characterized by a high Kullback-Leibler divergence compared with all other data given. In this regard, we define an unbiased Kullback-Leibler divergence that allows for ranking regions of different size and show how to enable the algorithm to run on large-scale data sets in reasonable time using an interval proposal technique. Experiments on both synthetic and real data from various domains, such as climate analysis, video surveillance, and text forensics, demonstrate that our method is widely applicable and a valuable tool for finding interesting events in different types of data.
引用
收藏
页码:1088 / 1101
页数:14
相关论文
共 50 条
  • [1] Contextual Anomaly Detection in Spatio-Temporal Data using Locally Dense Regions
    Anand, Gaurangi
    Nayak, Richi
    2018 IEEE 30TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2018, : 963 - 967
  • [2] Video anomaly detection with spatio-temporal dissociation
    Chang, Yunpeng
    Tu, Zhigang
    Xie, Wei
    Luo, Bin
    Zhang, Shifu
    Sui, Haigang
    Yuan, Junsong
    PATTERN RECOGNITION, 2022, 122
  • [3] Spatio-Temporal AutoEncoder for Video Anomaly Detection
    Zhao, Yiru
    Deng, Bing
    Shen, Chen
    Liu, Yao
    Lu, Hongtao
    Hua, Xian-Sheng
    PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 1933 - 1941
  • [4] Spatio-temporal Anomaly Detection in Traffic Data
    Wang, Qing
    Lv, Weifeng
    Du, Bowen
    ISCSIC'18: PROCEEDINGS OF THE 2ND INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE AND INTELLIGENT CONTROL, 2018,
  • [5] Detecting Taxi Trajectory Anomaly Based on Spatio-Temporal Relations
    Qian, Shiyou
    Cheng, Bin
    Cao, Jian
    Xue, Guangtao
    Zhu, Yanmin
    Yu, Jiadi
    Li, Minglu
    Zhang, Tao
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (07) : 6883 - 6894
  • [6] Convex Polytope Ensembles for Spatio-Temporal Anomaly Detection
    Turchini, Francesco
    Seidenari, Lorenzo
    Del Bimbo, Alberto
    IMAGE ANALYSIS AND PROCESSING,(ICIAP 2017), PT I, 2017, 10484 : 174 - 184
  • [7] Spatio-Temporal United Memory for Video Anomaly Detection
    Wang, Yunlong
    Chen, Mingyi
    Li, Jiaxin
    Li, Hongjun
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2022, 2022, 13813 : 84 - 93
  • [8] Anomaly Detection with a Spatio-Temporal Tracking of the Laser Spot
    Atienza, David
    Bielza, Concha
    Diaz, Javier
    Larranaga, Pedro
    PROCEEDINGS OF THE EIGHTH EUROPEAN STARTING AI RESEARCHER SYMPOSIUM (STAIRS 2016), 2016, 284 : 137 - 142
  • [9] Transformer with Spatio-Temporal Representation for Video Anomaly Detection
    Sun, Xiaohu
    Chen, Jinyi
    Shen, Xulin
    Li, Hongjun
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2022, 2022, 13813 : 213 - 222
  • [10] Spatio-Temporal Unity Networking for Video Anomaly Detection
    Li, Yuanyuan
    Cai, Yiheng
    Liu, Jiaqi
    Lang, Shinan
    Zhang, Xinfeng
    IEEE ACCESS, 2019, 7 : 172425 - 172432