Adaptive background learning for vehicle detection and spatio-temporal tracking

被引:0
|
作者
Zhang, CC [1 ]
Chen, SC [1 ]
Shyu, ML [1 ]
Peeta, S [1 ]
机构
[1] Florida Int Univ, Sch Comp Sci, Distributed Multimedia Informat Syst Lab, Miami, FL 33199 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traffic video analysis can provide a wide range of useful information such as vehicle identification, traffic flow, to traffic planners. In this paper, a framework is proposed to analyze the traffic video sequence using unsupervised vehicle detection and spatio-temporal tracking that includes an image/video segmentation method, a background learning/subtraction method and an object tracking algorithm. A real-life traffic video sequence from a road intersection is used in our study and the experimental results show that our proposed unsupervised framework is effective in vehicle tracking for complex traffic situations.
引用
收藏
页码:797 / 801
页数:5
相关论文
共 50 条
  • [1] Adaptive spatio-temporal context learning for visual tracking
    Zhang, Yaqin
    Wang, Liejun
    Qin, Jiwei
    [J]. IMAGING SCIENCE JOURNAL, 2019, 67 (03): : 136 - 147
  • [2] Adaptive Spatio-Temporal Context Learning for Visual Target Tracking
    Marvasti-Zadeh, Seyed Mojtaba
    Ghanei-Yakhdan, Hossein
    Kasaei, Shohreh
    [J]. 2017 10TH IRANIAN CONFERENCE ON MACHINE VISION AND IMAGE PROCESSING (MVIP), 2017, : 10 - 14
  • [3] An adaptive background modeling for foreground detection using spatio-temporal features
    Subrata Kumar Mohanty
    Suvendu Rup
    [J]. Multimedia Tools and Applications, 2021, 80 : 1311 - 1341
  • [4] An adaptive background modeling for foreground detection using spatio-temporal features
    Mohanty, Subrata Kumar
    Rup, Suvendu
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (01) : 1311 - 1341
  • [5] An intelligent framework for spatio-temporal vehicle tracking
    Chen, SC
    Shyu, ML
    Zhang, CC
    [J]. 2001 IEEE INTELLIGENT TRANSPORTATION SYSTEMS - PROCEEDINGS, 2001, : 213 - 218
  • [6] Background subtraction with adaptive spatio-temporal neighborhood analysis
    Cristani, Marco
    Murino, Vittorio
    [J]. VISAPP 2008: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 2, 2008, : 484 - 489
  • [7] Adaptive background mixture model with spatio-temporal samples
    Guo, Pengyu
    Zhu, Xiaozhou
    Zhang, Hui
    Zhang, Xiaohu
    [J]. OPTIK, 2019, 183 : 433 - 440
  • [8] Spatio-temporal Active Learning for Visual Tracking
    Liu, Chenfeng
    Zhu, Pengfei
    Hu, Qinghua
    [J]. 2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [9] Learning Spatio-Temporal Transformer for Visual Tracking
    Yan, Bin
    Peng, Houwen
    Fu, Jianlong
    Wang, Dong
    Lu, Huchuan
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 10428 - 10437
  • [10] Topic detection and tracking with spatio-temporal evidence
    Makkonen, J
    Ahonen-Myka, H
    Salmenkivi, M
    [J]. ADVANCES IN INFORMATION RETRIEVAL, 2003, 2633 : 251 - 265