Adaptive spatio-temporal context learning for visual tracking

被引:5
|
作者
Zhang, Yaqin [1 ]
Wang, Liejun [1 ]
Qin, Jiwei [2 ]
机构
[1] Xinjiang Univ, Sch Informat Sci & Engn, Urumqi, Peoples R China
[2] Xinjiang Univ, Network & Informat Technol Ctr, Urumqi, Peoples R China
来源
IMAGING SCIENCE JOURNAL | 2019年 / 67卷 / 03期
基金
美国国家科学基金会;
关键词
Target tracking; spatio-temporal context; Histogram of Oriented Gradient; Colour-naming;
D O I
10.1080/13682199.2019.1567020
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
In recent years, a spatio-temporal context (STC) algorithm has attracted the attention of scholars, due to the algorithm makes full use of the information of the target background. Although the STC algorithm achieve tracking at the real-time, but there is still a need to improve the tracking capability when the target is occluded or the size of the target changes. In this paper, we presented an adaptive spatio-temporal context learning for visual tracking (AFSTC). Firstly, in order to accurately describe the appearance of the target, we integrate Histogram of Oriented Gradient (HOG) and Colour-naming (CN) features. And then we use the average difference between two adjacent frames to adjust the learning rate of update model for adaptive tracking. Finally, we adjust parameters of scale update strategy to achieve the competitive results on accuracy and robustness. We perform experiments on the Online Tracking Benchmark (OTB) 2015 dataset. Our tracker achieves a 13% relative gain in distance precision compared to the traditional STC algorithm. Moreover, although the speed of our tracker reduces, but it reaches 129.99 frames per second (FPS) and can still achieve tracking at the real-time.
引用
收藏
页码:136 / 147
页数:12
相关论文
共 50 条
  • [1] Adaptive Spatio-Temporal Context Learning for Visual Target Tracking
    Marvasti-Zadeh, Seyed Mojtaba
    Ghanei-Yakhdan, Hossein
    Kasaei, Shohreh
    [J]. 2017 10TH IRANIAN CONFERENCE ON MACHINE VISION AND IMAGE PROCESSING (MVIP), 2017, : 10 - 14
  • [2] Online Spatio-temporal Structural Context Learning for Visual Tracking
    Wen, Longyin
    Cai, Zhaowei
    Lei, Zhen
    Yi, Dong
    Li, Stan Z.
    [J]. COMPUTER VISION - ECCV 2012, PT IV, 2012, 7575 : 716 - 729
  • [3] Learning spatio-temporal context via hierarchical features for visual tracking
    Cao, Yi
    Ji, Hongbing
    Zhang, Wenbo
    Xue, Fei
    [J]. SIGNAL PROCESSING-IMAGE COMMUNICATION, 2018, 66 : 50 - 65
  • [4] Visual Tracking Using Spatio-temporal Context Template Set Learning
    Huang, Rixing
    Ren, Yi
    [J]. 2017 IEEE 9TH INTERNATIONAL CONFERENCE ON COMMUNICATION SOFTWARE AND NETWORKS (ICCSN), 2017, : 1496 - 1500
  • [5] Fast Visual Tracking via Dense Spatio-temporal Context Learning
    Zhang, Kaihua
    Zhang, Lei
    Liu, Qingshan
    Zhang, David
    Yang, Ming-Hsuan
    [J]. COMPUTER VISION - ECCV 2014, PT V, 2014, 8693 : 127 - 141
  • [6] Robust visual tracking via weighted spatio-temporal context learning
    Xu, Jian-Qiang
    Lu, Yao
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2015, 41 (11): : 1901 - 1912
  • [7] Spatio-temporal Active Learning for Visual Tracking
    Liu, Chenfeng
    Zhu, Pengfei
    Hu, Qinghua
    [J]. 2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [8] Learning Spatio-Temporal Transformer for Visual Tracking
    Yan, Bin
    Peng, Houwen
    Fu, Jianlong
    Wang, Dong
    Lu, Huchuan
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 10428 - 10437
  • [9] Visual Tracking With Weighted Adaptive Local Sparse Appearance Model via Spatio-Temporal Context Learning
    Li, Zhetao
    Zhang, Jie
    Zhang, Kaihua
    Li, Zhiyong
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (09) : 4478 - 4489
  • [10] Multi-Channel Features Spatio-Temporal Context Learning for Visual Tracking
    Zhou, Xiaoqin
    Liu, Xiaofeng
    Yang, Chenguang
    Jiang, Aimin
    Yan, Bin
    [J]. IEEE ACCESS, 2017, 5 : 12856 - 12864