Adaptive spatio-temporal context learning for visual tracking

被引:5
|
作者
Zhang, Yaqin [1 ]
Wang, Liejun [1 ]
Qin, Jiwei [2 ]
机构
[1] Xinjiang Univ, Sch Informat Sci & Engn, Urumqi, Peoples R China
[2] Xinjiang Univ, Network & Informat Technol Ctr, Urumqi, Peoples R China
来源
IMAGING SCIENCE JOURNAL | 2019年 / 67卷 / 03期
基金
美国国家科学基金会;
关键词
Target tracking; spatio-temporal context; Histogram of Oriented Gradient; Colour-naming;
D O I
10.1080/13682199.2019.1567020
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
In recent years, a spatio-temporal context (STC) algorithm has attracted the attention of scholars, due to the algorithm makes full use of the information of the target background. Although the STC algorithm achieve tracking at the real-time, but there is still a need to improve the tracking capability when the target is occluded or the size of the target changes. In this paper, we presented an adaptive spatio-temporal context learning for visual tracking (AFSTC). Firstly, in order to accurately describe the appearance of the target, we integrate Histogram of Oriented Gradient (HOG) and Colour-naming (CN) features. And then we use the average difference between two adjacent frames to adjust the learning rate of update model for adaptive tracking. Finally, we adjust parameters of scale update strategy to achieve the competitive results on accuracy and robustness. We perform experiments on the Online Tracking Benchmark (OTB) 2015 dataset. Our tracker achieves a 13% relative gain in distance precision compared to the traditional STC algorithm. Moreover, although the speed of our tracker reduces, but it reaches 129.99 frames per second (FPS) and can still achieve tracking at the real-time.
引用
收藏
页码:136 / 147
页数:12
相关论文
共 50 条
  • [21] Joint Spatio-Temporal Similarity and Discrimination Learning for Visual Tracking
    Liang, Yanjie
    Chen, Haosheng
    Wu, Qiangqiang
    Xia, Changqun
    Li, Jia
    [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34 (08) : 7284 - 7300
  • [22] Robust Online Learned Spatio-Temporal Context Model for Visual Tracking
    Wen, Longyin
    Cai, Zhaowei
    Lei, Zhen
    Yi, Dong
    Li, Stan Z.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (02) : 785 - 796
  • [23] Adaptive background learning for vehicle detection and spatio-temporal tracking
    Zhang, CC
    Chen, SC
    Shyu, ML
    Peeta, S
    [J]. ICICS-PCM 2003, VOLS 1-3, PROCEEDINGS, 2003, : 797 - 801
  • [24] An effective Object Tracking Based on Spatio-Temporal Context Learning and Hog
    Wang, Zhenhai
    Xu, Bo
    [J]. 2015 11TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2015, : 661 - 664
  • [25] An Improved Spatio-temporal Context Tracking Algorithm
    Wan, Hao
    Li, Weiguang
    Ye, Guoqiang
    [J]. PROCEEDINGS OF THE 2018 13TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2018), 2018, : 1320 - 1325
  • [26] Spatio-Temporal Context Tracking with Color Attributes
    Xu, Bo
    Wang, Zhenhai
    Kang, Yuyun
    Wang, Yulan
    [J]. 2017 13TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2017, : 717 - 721
  • [27] Spatio-temporal context for robust multitarget tracking
    Nguyen, Hieu T.
    Ji, Qiang
    Smeulders, Arnold W. M.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (01) : 52 - 64
  • [28] Joint spatio-temporal modeling for visual tracking
    Sun, Yumei
    Tang, Chuanming
    Luo, Hui
    Li, Qingqing
    Peng, Xiaoming
    Zhang, Jianlin
    Li, Meihui
    Wei, Yuxing
    [J]. KNOWLEDGE-BASED SYSTEMS, 2024, 283
  • [29] Spatio-temporal matching for siamese visual tracking
    Zhang, Jinpu
    Dai, Kaiheng
    Li, Ziwen
    Wei, Ruonan
    Wang, Yuehuan
    [J]. NEUROCOMPUTING, 2023, 522 : 73 - 88
  • [30] Multi-scale spatio-temporal context visual tracking algorithm based on target model adaptive update
    Chen, Faling
    Ding, Qinghai
    Luo, Haibo
    Hui, Bin
    Chang, Zheng
    Liu, Yunpeng
    [J]. AOPC 2020: OPTICAL SENSING AND IMAGING TECHNOLOGY, 2020, 11567