Anomaly Detection with a Spatio-Temporal Tracking of the Laser Spot

被引:1
|
作者
Atienza, David [1 ]
Bielza, Concha [1 ]
Diaz, Javier [1 ,2 ]
Larranaga, Pedro [1 ]
机构
[1] Tech Univ Madrid, Dept Artificial Intelligence, Madrid, Spain
[2] IKERGUNE AIE, Elgoibar, Spain
关键词
Kernel density estimation; Anomaly detection; Time-series; Laser surface heating process;
D O I
10.3233/978-1-61499-682-8-137
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Anomaly detection is an important problem with many applications in industry. This paper introduces a new methodology for detecting anomalies in a real laser heating surface process recorded with a high-speed thermal camera (1000 fps, 32x32 pixels). The system is trained with non-anomalous data only (32 videos with 21500 frames). The proposed method is built upon kernel density estimation and is capable of detecting anomalies in time-series data. The classification should be completed in-process, that is, within the cycle time of the workpiece.
引用
收藏
页码:137 / 142
页数:6
相关论文
共 50 条
  • [41] Effective Crowd Anomaly Detection Through Spatio-temporal Texture Analysis
    Yu Hao
    Zhi-Jie Xu
    Ying Liu
    Jing Wang
    Jiu-Lun Fan
    International Journal of Automation and Computing, 2019, 16 : 27 - 39
  • [42] Unsupervised Anomaly Detection in Spatio-Temporal Stream Network Sensor Data
    Santos-Fernandez, Edgar
    Ver Hoef, Jay M.
    Peterson, Erin E.
    Mcgree, James
    Villa, Cesar A.
    Leigh, Catherine
    Turner, Ryan
    Roberts, Cameron
    Mengersen, Kerrie
    WATER RESOURCES RESEARCH, 2024, 60 (11)
  • [43] STAD: Spatio-Temporal Anomaly Detection Mechanism for Mobile Network Management
    Dridi, Aicha
    Boucetta, Cherifa
    Hammami, Seif Eddine
    Afifi, Hossam
    Moungla, Hassine
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021, 18 (01): : 894 - 906
  • [44] Spatio-Temporal Network Anomaly Detection by Assessing Deviations of Empirical Measures
    Paschalidis, Ioannis Ch.
    Smaragdakis, Georgios
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2009, 17 (03) : 685 - 697
  • [45] Video Anomaly Detection by Solving Decoupled Spatio-Temporal Jigsaw Puzzles
    Wang, Guodong
    Wang, Yunhong
    Qin, Jie
    Zhang, Dongming
    Bao, Xiuguo
    Huang, Di
    COMPUTER VISION, ECCV 2022, PT X, 2022, 13670 : 494 - 511
  • [46] STformer: Spatio-Temporal Transformer for Multivariate Time Series Anomaly Detection
    Li, Zhengyu
    Zhang, Hongjie
    Zheng, Wei
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING-ICANN 2024, PT VI, 2024, 15021 : 297 - 311
  • [47] Effective Crowd Anomaly Detection Through Spatio-temporal Texture Analysis
    Hao, Yu
    Xu, Zhi-Jie
    Liu, Ying
    Wang, Jing
    Fan, Jiu-Lun
    INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2019, 16 (01) : 27 - 39
  • [48] Weakly-Supervised Spatio-Temporal Anomaly Detection in Surveillance Video
    Wu, Jie
    Zhang, Wei
    Li, Guanbin
    Wu, Wenhao
    Tan, Xiao
    Li, Yingying
    Ding, Errui
    Lin, Liang
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 1172 - 1178
  • [49] FastAno: Fast Anomaly Detection via Spatio-temporal Patch Transformation
    Park, Chaewon
    Cho, MyeongAh
    Lee, Minhyeok
    Lee, Sangyoun
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 1908 - 1918
  • [50] HOT SPOT DETECTION AND SPATIO-TEMPORAL DYNAMICS OF DENGUE IN QUEENSLAND, AUSTRALIA
    Naish, S.
    Tong, S.
    ISPRS TECHNICAL COMMISSION VIII SYMPOSIUM, 2014, 40-8 : 197 - 204