MULTILEVEL MONTE CARLO METAMODELING

被引:0
|
作者
Rosenbaum, Imry [1 ]
Staum, Jeremy [1 ]
机构
[1] Northwestern Univ, McCormick Sch Engn, Dept Ind Engn & Management Sci, Evanston, IL 60208 USA
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Multilevel Monte Carlo (MLMC) methods have been used by the information-based complexity community in order to improve the computational efficiency of parametric integration. We extend this approach by relaxing the assumptions on differentiability of the simulation output. Relaxing the assumption on the differentiability of the simulation output makes the MLMC method more widely applicable to stochastic simulation metamodeling problems in industrial engineering. The proposed scheme uses a sequential experiment design which allocates effort unevenly among design points in order to increase its efficiency. The procedure's efficiency is tested on an example of option pricing in the Black-Scholes model.
引用
下载
收藏
页码:509 / 520
页数:12
相关论文
共 50 条
  • [41] Multilevel Sequential Monte Carlo Samplers for Normalizing Constants
    Del Moral, Pierre
    Jasra, Ajay
    Law, Kody J. H.
    Zhou, Yan
    ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2017, 27 (03):
  • [42] Multilevel Monte Carlo FDTD Method for Uncertainty Quantification
    Zhu, Xiaojie
    Di Rienzo, Luca
    Ma, Xikui
    Codecasa, Lorenzo
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2022, 21 (10): : 2030 - 2034
  • [43] Adaptive Multilevel Splitting for Monte Carlo particle transport
    Louvin, Henri
    Dumonteil, Eric
    Lelievre, Tony
    Rousset, Mathias
    Diop, Cheikh M.
    ICRS-13 & RPSD-2016, 13TH INTERNATIONAL CONFERENCE ON RADIATION SHIELDING & 19TH TOPICAL MEETING OF THE RADIATION PROTECTION AND SHIELDING DIVISION OF THE AMERICAN NUCLEAR SOCIETY - 2016, 2017, 153
  • [44] Randomized Multilevel Monte Carlo for Embarrassingly Parallel Inference
    Jasra, Ajay
    Law, Kody J. H.
    Tarakanov, Alexander
    Yu, Fangyuan
    DRIVING SCIENTIFIC AND ENGINEERING DISCOVERIES THROUGH THE INTEGRATION OF EXPERIMENT, BIG DATA, AND MODELING AND SIMULATION, 2022, 1512 : 3 - 21
  • [45] Multilevel Monte Carlo for Asian options and limit theorems
    Ben Alaya, Mohamed
    Kebaier, Ahmed
    MONTE CARLO METHODS AND APPLICATIONS, 2014, 20 (03): : 181 - 194
  • [46] COMPLEXITY OF MULTILEVEL MONTE CARLO TAU-LEAPING
    Anderson, David F.
    Higham, Desmond J.
    Sun, Yu
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (06) : 3106 - 3127
  • [47] Multilevel Monte Carlo Approximation of Distribution Functions and Densities
    Giles, Michael B.
    Nagapetyan, Tigran
    Ritter, Klaus
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2015, 3 (01): : 267 - 295
  • [48] A Multilevel Monte Carlo Method for the Valuation of Swing Options
    Ghodssi-Ghassemabadi, Hakimeh
    Yari, Gholam Hossein
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [49] MULTILEVEL QUASI-MONTE CARLO FOR INTERVAL ANALYSIS
    Callens, Robin R. P.
    Faes, Matthias G. R.
    Moens, David
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2022, 12 (04) : 1 - 19
  • [50] Multilevel sequential Monte Carlo algorithms for MIMO demodulation
    Aggarwal, Pradeep
    Wang, Xiaodong
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2007, 6 (02) : 750 - 758