Multilevel Monte Carlo Approximation of Distribution Functions and Densities

被引:40
|
作者
Giles, Michael B. [1 ]
Nagapetyan, Tigran [2 ]
Ritter, Klaus [3 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
[2] Fraunhofer ITWM, D-67663 Kaiserslautern, Germany
[3] TU Kaiserslautern, Fachbereich Math, D-67653 Kaiserslautern, Germany
来源
基金
英国工程与自然科学研究理事会;
关键词
multilevel Monte Carlo; approximation of distribution functions and densities; stochastic differential equations; path-(in) dependent functionals; stopped exit times; smoothing; STOCHASTIC DIFFERENTIAL-EQUATIONS; EULER SCHEME; CONVERGENCE; DIFFUSION;
D O I
10.1137/140960086
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct and analyze multilevel Monte Carlo methods for the approximation of distribution functions and densities of univariate random variables. Since, by assumption, the target distribution is not known explicitly, approximations have to be used. We provide a general analysis under suitable assumptions on the weak and strong convergence. We apply the results to smooth path-independent and path-dependent functionals and to stopped exit times of stochastic differential equations (SDEs).
引用
下载
收藏
页码:267 / 295
页数:29
相关论文
共 50 条
  • [1] Multilevel Monte Carlo Approximation of Functions
    Krumscheid, S.
    Nobile, F.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2018, 6 (03): : 1256 - 1293
  • [2] Approximation of probability density functions by the Multilevel Monte Carlo Maximum Entropy method
    Bierig, Claudio
    Chernov, Alexey
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 314 : 661 - 681
  • [3] SPATIAL-DISTRIBUTION FUNCTIONS FOR CALCULATING NEUTRON DENSITIES BY MONTE CARLO
    AMSTER, HJ
    TALLEY, WK
    NUCLEAR SCIENCE AND ENGINEERING, 1964, 20 (01) : 53 - &
  • [4] Monte Carlo on Manifolds: Sampling Densities and Integrating Functions
    Zappa, Emilio
    Holmes-Cerfon, Miranda
    Goodman, Jonathan
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2018, 71 (12) : 2609 - 2647
  • [5] ANALYSIS OF PREINTEGRATION FOLLOWED BY QUASI--MONTE CARLO INTEGRATION FOR DISTRIBUTION FUNCTIONS AND DENSITIES\ast
    Gilbert, Alexander D.
    Kuo, Frances Y.
    Sloan, Ian H.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (01) : 135 - 166
  • [6] The difficulty of Monte Carlo approximation of multivariate monotone functions
    Kunsch, Robert J.
    JOURNAL OF APPROXIMATION THEORY, 2019, 241 : 33 - 56
  • [7] Simultaneous Monte Carlo analysis of parton densities and fragmentation functions
    Moffat, E.
    Melnitchouk, W.
    Rogers, T. C.
    Sato, N.
    PHYSICAL REVIEW D, 2021, 104 (01)
  • [8] MULTILEVEL MONTE CARLO WITH NUMERICAL SMOOTHING FOR ROBUST AND EFFICIENT COMPUTATION OF PROBABILITIES AND DENSITIES
    Bayer, Christian
    Hammouda, Chiheb Ben
    Ltempone, Raul
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (03): : A1514 - A1548
  • [9] An improved multilevel Monte Carlo method for estimating probability distribution functions in stochastic oil reservoir simulations
    Lu, Dan
    Zhang, Guannan
    Webster, Clayton
    Barbier, Charlotte
    WATER RESOURCES RESEARCH, 2016, 52 (12) : 9642 - 9660
  • [10] A Simple, Bias-free Approximation of Covariance Functions by the Multilevel Monte Carlo Method Having Nearly Optimal Complexity
    Chernov, Alexey
    Schetzke, Erik Marc
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2023, 11 (03): : 941 - 969