MULTILEVEL MONTE CARLO METAMODELING

被引:0
|
作者
Rosenbaum, Imry [1 ]
Staum, Jeremy [1 ]
机构
[1] Northwestern Univ, McCormick Sch Engn, Dept Ind Engn & Management Sci, Evanston, IL 60208 USA
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Multilevel Monte Carlo (MLMC) methods have been used by the information-based complexity community in order to improve the computational efficiency of parametric integration. We extend this approach by relaxing the assumptions on differentiability of the simulation output. Relaxing the assumption on the differentiability of the simulation output makes the MLMC method more widely applicable to stochastic simulation metamodeling problems in industrial engineering. The proposed scheme uses a sequential experiment design which allocates effort unevenly among design points in order to increase its efficiency. The procedure's efficiency is tested on an example of option pricing in the Black-Scholes model.
引用
下载
收藏
页码:509 / 520
页数:12
相关论文
共 50 条
  • [21] Weak Error for Nested Multilevel Monte Carlo
    Daphné Giorgi
    Vincent Lemaire
    Gilles Pagès
    Methodology and Computing in Applied Probability, 2020, 22 : 1325 - 1348
  • [22] Multilevel Monte Carlo for exponential Levy models
    Giles, Michael B.
    Xia, Yuan
    FINANCE AND STOCHASTICS, 2017, 21 (04) : 995 - 1026
  • [23] MULTILEVEL MONTE CARLO APPROACHES FOR NUMERICAL HOMOGENIZATION
    Efendiev, Yalchin
    Kronsbein, Cornelia
    Legoll, Frederic
    MULTISCALE MODELING & SIMULATION, 2015, 13 (04): : 1107 - 1135
  • [24] On Dynamic Parallelization of Multilevel Monte Carlo Algorithm
    Shegunov, Nikolay
    Iliev, Oleg
    CYBERNETICS AND INFORMATION TECHNOLOGIES, 2020, 20 (06) : 116 - 125
  • [25] Multilevel monte carlo for cortical circuit models
    Zhuo-Cheng Xiao
    Kevin K. Lin
    Journal of Computational Neuroscience, 2022, 50 : 9 - 15
  • [26] Multilevel Monte Carlo in approximate Bayesian computation
    Jasra, Ajay
    Jo, Seongil
    Nott, David
    Shoemaker, Christine
    Tempone, Raul
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2019, 37 (03) : 346 - 360
  • [27] Multilevel monte carlo for cortical circuit models
    Xiao, Zhuo-Cheng
    Lin, Kevin K.
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2022, 50 (01) : 9 - 15
  • [28] A MULTILEVEL MONTE CARLO ESTIMATOR FOR MATRIX MULTIPLICATION
    Wu, Yue
    Polydorides, Nick
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (05): : A2731 - A2749
  • [29] Multilevel Monte Carlo by using the Halton sequence
    Nagy, Shady Ahmed
    El-Beltagy, Mohamed A.
    Wafa, Mohamed
    MONTE CARLO METHODS AND APPLICATIONS, 2020, 26 (03): : 193 - 203
  • [30] On the calibration of multilevel Monte Carlo ensemble forecasts
    Gregory, A.
    Cotter, C. J.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2017, 143 (705) : 1929 - 1935