MULTILEVEL MONTE CARLO METAMODELING

被引:0
|
作者
Rosenbaum, Imry [1 ]
Staum, Jeremy [1 ]
机构
[1] Northwestern Univ, McCormick Sch Engn, Dept Ind Engn & Management Sci, Evanston, IL 60208 USA
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Multilevel Monte Carlo (MLMC) methods have been used by the information-based complexity community in order to improve the computational efficiency of parametric integration. We extend this approach by relaxing the assumptions on differentiability of the simulation output. Relaxing the assumption on the differentiability of the simulation output makes the MLMC method more widely applicable to stochastic simulation metamodeling problems in industrial engineering. The proposed scheme uses a sequential experiment design which allocates effort unevenly among design points in order to increase its efficiency. The procedure's efficiency is tested on an example of option pricing in the Black-Scholes model.
引用
下载
收藏
页码:509 / 520
页数:12
相关论文
共 50 条
  • [31] An introduction to multilevel Monte Carlo for option valuation
    Higham, Desmond J.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (12) : 2347 - 2360
  • [32] Multilevel Monte Carlo simulation of Coulomb collisions
    Rosin, M. S.
    Ricketson, L. F.
    Dimits, A. M.
    Caflisch, R. E.
    Cohen, B. I.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 274 : 140 - 157
  • [33] Weak Error for Nested Multilevel Monte Carlo
    Giorgi, Daphne
    Lemaire, Vincent
    Pages, Gilles
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2020, 22 (03) : 1325 - 1348
  • [34] Multilevel Monte Carlo for exponential Lévy models
    Michael B. Giles
    Yuan Xia
    Finance and Stochastics, 2017, 21 : 995 - 1026
  • [35] FROM ROUGH PATH ESTIMATES TO MULTILEVEL MONTE CARLO
    Bayer, Christian
    Friz, Peter K.
    Riedel, Sebastian
    Schoenmakers, John
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (03) : 1449 - 1483
  • [36] The Multilevel Monte Carlo Method for Simulations of Turbulent Flows
    Chen, Qingshan
    Ming, Ju
    MONTHLY WEATHER REVIEW, 2018, 146 (09) : 2933 - 2947
  • [37] A Multilevel Monte Carlo Method for Computing Failure Probabilities
    Elfverson, Daniel
    Hellman, Fredrik
    Malqvist, Axel
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2016, 4 (01): : 312 - 330
  • [38] Multilevel blocking Monte Carlo simulations for quantum dots
    Egger, R
    Mak, CH
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2001, 15 (10-11): : 1416 - 1425
  • [39] MULTILEVEL MONTE CARLO METHODS FOR HIGHLY HETEROGENEOUS MEDIA
    Teckentrup, Aretha L.
    2012 WINTER SIMULATION CONFERENCE (WSC), 2012,
  • [40] Intrinsic fault tolerance of multilevel Monte Carlo methods
    Pauli, Stefan
    Arbenz, Peter
    Schwab, Christoph
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2015, 84 : 24 - 36