Multilevel Monte Carlo FDTD Method for Uncertainty Quantification

被引:0
|
作者
Zhu, Xiaojie [1 ,2 ]
Di Rienzo, Luca [2 ]
Ma, Xikui [1 ]
Codecasa, Lorenzo [2 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Sch Elect Engn, Xian 710049, Peoples R China
[2] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, I-20133 Milan, Italy
来源
基金
国家重点研发计划;
关键词
Finite difference methods; Time-domain analysis; Monte Carlo methods; Standards; Uncertainty; Random variables; Electric fields; Finite-difference time-domain method; multilevel Monte Carlo method (MLMC); uncertainty quantification; STOCHASTIC FDTD; ROUGH-SURFACE; SCATTERING;
D O I
10.1109/LAWP.2022.3189414
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The recent multilevel Monte Carlo method is here proposed for uncertainty quantification in electromagnetic problems solved by the finite-difference time-domain (FDTD) method, when material parameters are modeled as random variables. It improves the estimations of the mean and variance of the quantities of interest computed on a FDTD spatial grid by sampling at coarser levels of discretization. The proposed approach can amply reduce the computational cost of the standard Monte Carlo FDTD, at the price of a small reduction of its accuracy. It is advantageous with respect to polynomial chaos FDTD, when the latter fails or becomes prohibitive for computational requirements. It also appears to widely outperform stochastic FDTD in terms of accuracy.
引用
收藏
页码:2030 / 2034
页数:5
相关论文
共 50 条
  • [1] Uncertainty quantification in the Henry problem using the multilevel Monte Carlo method
    Logashenko, Dmitry
    Litvinenko, Alexander
    Tempone, Raul
    Vasilyeva, Ekaterina
    Wittum, Gabriel
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 503
  • [2] EMBEDDED MULTILEVEL MONTE CARLO FOR UNCERTAINTY QUANTIFICATION IN RANDOM DOMAINS
    Badia, Santiago
    Hampton, Jerrad
    Principe, Javier
    [J]. INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2021, 11 (01) : 119 - 142
  • [3] UNCERTAINTY QUANTIFICATION OF THE GEM CHALLENGE MAGNETIC RECONNECTION PROBLEM USING THE MULTILEVEL MONTE CARLO METHOD
    Sousa, Eder M.
    Lin, Guang
    Shumlak, Uri
    [J]. INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2015, 5 (04) : 327 - 339
  • [4] Uncertainty Quantification for Porous Media Flow Using Multilevel Monte Carlo
    Mohring, Jan
    Milk, Rene
    Ngo, Adrian
    Klein, Ole
    Iliev, Oleg
    Ohlberger, Mario
    Bastian, Peter
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2015, 2015, 9374 : 145 - 152
  • [5] Multilevel Monte Carlo applied for uncertainty quantification in stochastic multiscale systems
    Kimaev, Grigoriy
    Chaffart, Donovan
    Ricardez-Sandoval, Luis A.
    [J]. AICHE JOURNAL, 2020, 66 (08)
  • [6] Probability Density Function Estimation in Multilevel Monte Carlo FDTD Method
    Zhu, Xiaojie
    Di Rienzo, Luca
    Ma, Xikui
    Codecasa, Lorenzo
    [J]. TWENTIETH BIENNIAL IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (IEEE CEFC 2022), 2022,
  • [7] Multi-Parametric Uncertainty Quantification with a Hybrid Monte-Carlo/Polynomial Chaos Expansion FDTD Method
    Gu, Zixi
    Sarris, Costas D.
    [J]. 2015 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2015,
  • [8] Applying the Multilevel Monte Carlo Method for Heterogeneity-Induced Uncertainty Quantification of Surfactant/Polymer Flooding
    Alkhatib, A.
    Babaei, M.
    [J]. SPE JOURNAL, 2016, 21 (04): : 1192 - 1203
  • [9] A Multilevel Markov Chain Monte Carlo Approach for Uncertainty Quantification in Deformable Registration
    Schultz, Sandra
    Handels, Heinz
    Ehrhardt, Jan
    [J]. MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
  • [10] Enhanced Multilevel Monte Carlo Method Applied to FDTD for Probability Distribution Estimation
    Zhu, Xiaojie
    Di Rienzo, Luca
    Ma, Xikui
    Codecasa, Lorenzo
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2023, 71 (10) : 8390 - 8395