Uncertainty Quantification for Porous Media Flow Using Multilevel Monte Carlo

被引:7
|
作者
Mohring, Jan [1 ]
Milk, Rene [2 ]
Ngo, Adrian [3 ]
Klein, Ole [3 ]
Iliev, Oleg [1 ]
Ohlberger, Mario [2 ]
Bastian, Peter [3 ]
机构
[1] Fraunhofer ITWM, Fraunhofer Pl 1, D-67663 Kaiserslautern, Germany
[2] Univ Munster, Inst Computat & Appl Math, D-48149 Munster, Germany
[3] Heidelberg Univ, Interdisciplinary Ctr Sci Comp, D-69120 Heidelberg, Germany
关键词
Uncertainty quantification; Multilevel Monte Carlo; Multiscale finite elements; Porous media; Random permeability; Exa-scale; DUNE; FINITE-ELEMENT-METHOD; SIMULATION; FRAMEWORK;
D O I
10.1007/978-3-319-26520-9_15
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Uncertainty quantification (UQ) for porous media flow is of great importance for many societal, environmental and industrial problems. An obstacle for progress in this area is the extreme computational effort needed for solving realistic problems. It is expected that exa-scale computers will open the door for a significant progress in this area. We demonstrate how new features of the Distributed and Unified Numerics Environment DUNE [1] address these challenges. In the frame of the DFG funded project EXA-DUNE the software has been extended by multiscale finite element methods (MsFEM) and by a parallel framework for the multilevel Monte Carlo (MLMC) approach. This is a general concept for computing expected values of simulation results depending on random fields, e.g. the permeability of porous media. It belongs to the class of variance reduction methods and overcomes the slow convergence of classical Monte Carlo by combining cheap/inexact and expensive/accurate solutions in an optimal ratio.
引用
收藏
页码:145 / 152
页数:8
相关论文
共 50 条
  • [1] Uncertainty quantification in the Henry problem using the multilevel Monte Carlo method
    Logashenko, Dmitry
    Litvinenko, Alexander
    Tempone, Raul
    Vasilyeva, Ekaterina
    Wittum, Gabriel
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 503
  • [2] Multilevel Monte Carlo FDTD Method for Uncertainty Quantification
    Zhu, Xiaojie
    Di Rienzo, Luca
    Ma, Xikui
    Codecasa, Lorenzo
    [J]. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2022, 21 (10): : 2030 - 2034
  • [3] Multilevel and quasi-Monte Carlo methods for uncertainty quantification in particle travel times through random heterogeneous porous media
    Crevillen-Garcia, D.
    Power, H.
    [J]. ROYAL SOCIETY OPEN SCIENCE, 2017, 4 (08):
  • [4] EMBEDDED MULTILEVEL MONTE CARLO FOR UNCERTAINTY QUANTIFICATION IN RANDOM DOMAINS
    Badia, Santiago
    Hampton, Jerrad
    Principe, Javier
    [J]. INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2021, 11 (01) : 119 - 142
  • [5] Multilevel Monte Carlo methods for computing failure probability of porous media flow systems
    Fagerlund, F.
    Hellman, F.
    Malqvist, A.
    Niemi, A.
    [J]. ADVANCES IN WATER RESOURCES, 2016, 94 : 498 - 509
  • [6] A Hierarchical Multilevel Markov Chain Monte Carlo Algorithm with Applications to Uncertainty Quantification in Subsurface Flow
    Dodwell, T. J.
    Ketelsen, C.
    Scheichl, R.
    Teckentrup, A. L.
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2015, 3 (01): : 1075 - 1108
  • [7] Multilevel Monte Carlo applied for uncertainty quantification in stochastic multiscale systems
    Kimaev, Grigoriy
    Chaffart, Donovan
    Ricardez-Sandoval, Luis A.
    [J]. AICHE JOURNAL, 2020, 66 (08)
  • [8] On importance sampling Monte Carlo approach to uncertainty analysis for flow and transport in porous media
    Lu, ZM
    Zhang, DX
    [J]. ADVANCES IN WATER RESOURCES, 2003, 26 (11) : 1177 - 1188
  • [9] Bayesian uncertainty quantification for flows in heterogeneous porous media using reversible jump Markov chain Monte Carlo methods
    Mondal, A.
    Efendiev, Y.
    Mallick, B.
    Datta-Gupta, A.
    [J]. ADVANCES IN WATER RESOURCES, 2010, 33 (03) : 241 - 256
  • [10] FORWARD AND INVERSE UNCERTAINTY QUANTIFICATION USING MULTILEVEL MONTE CARLO ALGORITHMS FOR AN ELLIPTIC NONLOCAL EQUATION
    Jasra, Ajay
    Law, Kody J. H.
    Zhou, Yan
    [J]. INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2016, 6 (06) : 501 - 514